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SECTION I

OVERVIEW

At present many, techniques exist which aim at target

identification. The traditional approach is to develop a data
bank of target features and to store these in memory. For a niew
target, its fea*ures are measured and compared to those of the
targets stored in memory. A best fit approach will select the
target which most likely corresponds to the new target. Thus,
the target has been identified.

This approach closely resembles the state of the art in
language translation by machine in the 1960's. A dictionary
look-up procedure provided a crude, word-to-word translation of
the foreign language into English. These efforts were only
partially successful. Later on, improvements were sought by
adding connecting principles between words and between word
phrases. Aside trom these syntactical improvements, it was felt
necessary to formalize meaning into sentence structure and
interpretation. A distinction was made between syntactic surface
structure and semantic deep structure. All of these efforts form
the core of present machine translation techniques.

It seems profitable in the field of target identification to
keep the linguistic model in mind, because there are many
resemblances. First it is obvious that not all target features

. can be independent of each other; otherwise, no relationships can
be formed between size, strength, shape, etc., of target
structure. Also, targets may have a semantic aspect. A target
may be identified by its meaning as well as by its observable

Sfeatures. An object propelled in my direction requires my
attention even before I can recognize its features in detail.
The attention focus is directed to the object because of a
potential threat it poses. Hence, object definition is related

U
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to the meaning or purpose the object has in an existing life

situation. Machine identification of targets requires machine

interpretation of targets. In order to relate to the information

the machine will provide, some semantic or subjective elements
have to be taken into account in the data processing.

This work will be an attempt to provide a systematic theory

for target identification. The theory will address itself to

basic questions such as: What is a target? How can I define a

target as an object or as the concept of an object within a

mathematical context? To the author's best knowledge, this work

is a new approach, which may bear fruit in many other fields of

application.

If one wishes to identify targets, one has to have at one's

disposal a system of knowledge. And in order to have a

mathematical approach, one has to develop first a mathematical

theory of cognitive systems. The present scene shows a

proliferation of cognitive sciences. This is no doubt due to the

introduction of computers which propels artifical knowledge into

society at an unprecedented rate. With all this activity, it is

* rather surprising that no corresponding theoretical activity on

knowledge based systems is visible today. Most approaches are of

a heuristic nature, resembling the state of physical science in

an ancient period.

Perhaps the difficulty lies with a basic stumbling block

alluded to above: one does not know how to present subjective

0O elements within a consistent mathematical framework. Most common

logic is based on a binary notion of truth: something is true or

it is false. However in real life, one often encounters

questions to which the answer must be: "I don't know".
0 Basically, subjectivity is hidden within this phrase, because it

refers to a state of personal knowledge. The addition of "I

don't know" as part of the system of knowledge leads to a simple

system of (modal) logic which includes objective as well as

%."2.
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subjective elements as a necessary and essential requirement. An

important result of this part of the work will be the notion

of: "Truth within a finite system of knowledge". The next task

will be to find a precise mathematical representation for the

knowledge operations defined previously. This part rounds off

the theory for cognitive state-operations.

A further crucial step is looking for processes which lead

to formation of knowledge states. Two existing technologies are

useful as prime models for these processes. The two technologies

are associated with radar and quantum mechanics. At first sight,

these fields seem to have little in common with each other and

with knowledge in general. However from a knowledge-based point

of vie,, a radar system can be viewed upon as a sophisticated

model and extension of human sensors to look at and interpret the

world, whereas quantum mechanics provides a refined theory of

measurement and interaction with the world of elementary

particles. In both cases, what is emphasized is the

idcntification of objecLs placed within a given real-world

environment ased on their characteristic parameters and their

dynamics.

The borrowing of tools from well-established technologies

obviously has many mathematical and practical advantages.
Primarily, it opens up new ways for looking at things based upon

known principles. Hence it extends conceptual horizons with the

least amount of difficulty and with the most possible gain to be

achieved.

The following sections lead systematically to this new world

of Knowledge, the subject matter being that of knowledge itself

and how it relates to target identification.

3
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SECTION 11

ELEMENrARY THEORY OF' KNOWLEDGE

Setting the Stage

The ability to know reaches into almost every conceivable

human enterprise: ordinary observation, education, development of

skills, science and engineering, medicine, practice of law,

government, mathematical skills, written and verbal expression of
thought, psychology, etc. The list could be extended almost
"indefinitely, since there seems to be no boundary to the
application of knowledge. Any person or other organism which
possesses knowledge of some kind is said to be a cognitive

* system.

Although everyone has an intuitive feeling about what
*• knowledge is and does, as soon as one tries to e::press this

* feeling in precise terms, a baffling variety of possibilities

VA artses due to the variety of subjects to which knowledge applies.

The task of defining knowledge can be made somewhat simpler

by recognizing that knowledge is somehow related to a statement

of fact. Somehow knowledge relates to statements of truth about
fact-- or events. This relationship is commonly used to test

knowledge.

Suppose a teacher has taught a course and now wants to test
the students' knowledge on the subject. A simple and efficient

way would be to expose the students to a multiple choice type of
quiz. Each sentence expresses a statement of fact related to the
course subject matter, which has three mutually exclusive
entries; "true", "false", or "I dont know". By this method,
"the students' knowledge on the subject could be tested, although

some guessing might cloud the accuracy of the test.

5
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"In order to eliminate the influence of guessing on the test

and provide a more accurate measure of knowledge, a backup

"procedure could be initiated. The backup procedure would require

each student to prove the accuracy of the assertion for each

entry made on the questionnaire.

The backup procedure provides a foolproof test for knowledge

at the expense of considerably complicating the originally

conceived simple multiple-choice quiz. There are several reasons

that the above sketched foolproof procedure for testing knowledge

is, in most instances, too complicated to be carried out in

practice. While the original test consisted of statements whose

validity can be asserted in an objective, neutral manner (i.e., a

computer can provide for each student his own test score), the

backup procedure would require a skilled staff to evaluate the

answers. Each student will have, perhaps subjective, arguments

for reaching decisions, and the validity of these arguments have

to be verified by skilled personnel.

There may even be disagreement among staff members about the

accuracy of the students' proof, and this matter could possibly

be resolved only by bringing in a higher authority or expert.

Hence, every backup procedure might require its own backup. In

fact., the process described here is the way knowledge actually

progresses in scientific investigations. At a certain stage of

knowledge, a set of statements related to a scientific inquiry

are considered by the majority of experts to be true. Then, at a

later stage, some experiments show inconsistencies with this

established theory. The established theory then has to be

modified to incorporate the newl - observed facts, and the new

knowledge is now accepted as th:. _-h by a majority of experts,

* until, at some later star -Iew facts require theory

modification.

It follows that knowledge of a subject matter requires that

its definition has built in the possibility of backing up or

I



regressing. A complete or adequate definition of knowledge thus

requires the possibility for an infinite regression ; this

property is a basic and essential requirement of all systems of

knowledge.

Formal approach to cognitive systems

The above sketched informal approach to cognitive systems is
useful to present a formal theory. The quiz situation is
particularly tractible to formalization, although later on the

range of applicability of the theory will be considerably
extended to include almost any kind of event situation.

The quiz consists of input sentences of a propositional kind

called x. The output consists of sentences y, mutually exclusive
in three categories, which are of much simpler kind ("I"
indicates the student):

"yI: "i can show x is true" (true)

"I can show x is false"' (false)

Y3: "I cannot show x is true or x is false (don't know)

On the right-hand side are denoted the three possible
entries, in shorthand notation, as they would appear on the
questionnaire.

First sentence Yl is formalized. Since x is a statement and

Y* is a statement, a system of knowledge A, which transforms the
x statement into the yl statement is introduced.

*In practice, however, the regression can only be finite, and
this fact has important consequences for the development of
cognition in science.

7



Let Y= Az: "I (A) can show x is true",

where (A) in the sentence on the right is included to indicate

that the knowledge A belongs to the person who makes the
statement.

Since A in the above definition has the mathematical

character of a transformation, and later on different speakers
with knowledge A, and A2 interacting (communicating) with each

other will be encountered, it is required that if Alz is true,

where z = A2 x is a statement of the type Yl spoken by A2 , then

Alz = A1 (A2 x) = (AIA2 )x. That is, the combination of statements

may be considered as a combined system of knowledge AlA2

operating on the sentence x.

This system of knowledge can be expressed as:

A1 A2 x: "I (A1 ) can show that: 'I (A2 ) can show x is true';

"is true"

Several comments can be made at this point. Suppose the

speaker with knowledge A, can show that x is true such that Alx
is valid. Then the validity of A2 x can be established, without

having recourse to the method by which the speaker with knowledge

A2 (speaker A,) intends to prove that x is true, hence, AIA 2x is

a valid statement.

On the other hand, if speaker A1 cannot prove for himself
that x is true, then speaker A1 can only verify speaker A2 's
statement: A2 x, if speaker A1 finds out the method by which

speaker A2 intends to prove his contention. In the latter case
there is the back-up requirement for speaker A2 to present hisi2

* proof. After hearing the proof, speaker A1 , having learned
something, can now give consent by uttering the statement:

A1 (A2 x).

8

o, 21Sl ý



The simple statement: y = Ax: "I can show that x is true"
cannot be of much interest, unless speaker with knowledge A
(speaker A). presents the method to show Ax is true. In fact,

this is what the following statement implies.

z = Ay = A (Ax) = A Ax:

"I can show that: 'I can show x is true', is true."

"Toe last sentence contains, in essence, the willingness of
speaker A, after uttering: Ax, to back up the contention.

*° Formally, the essential requirement of a cognitive system is now

presented. The statement: Ax implies: A Ax, or Ax + A Ax, and
q• since already A Ax + Ax, Ax = A Ax, for all statemewsts x for

whicrh Ax is true, from which follows formally:

AA=A

The rule A A = A is the basic rule for all cognitive systems
considered here. From it follows easily the infinite regress
requirement, which is characteristic of all such knowledge:

A = A (A) = A (A A) = A A A = A A A A. . .

Notice that the associative rule which is essential to the formal

development of cognitive operations:

A (A (A (A))) = (A A) (A A) = A (A A A) = . . . = A A A A

IIThis rule applies in general, i.e., Al (A2A3) =AIA2A 3, etc.-[

In most practical cases, one is rarely required to go beyond
the first regression or back-up A = A A, in order to give a

*For variations on this theme, see Reference 1.

9
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convincing proof of statement Ax. For example, in Euclidian

geometry, a formula or statement x can be proven by stating y =

"Ax: "I can show that formula x is true", if a backup statement

or proof: Ay which reduces the theorem x to the axioms of

Euclidian geometry can be produced. The axioms are considered
true by definition and no further backup is required, nor would

it be of any further interest.

Such a mathematical cognitive system of proof is called

closed, for obvious reasons, whereas knowledge in physics is
always approximate. Always there is a possibility for backup and

improvement. Such a physical cognitive system is then called

open or open-ended.

In mathematics, if an operator satisfies the rule A = A A =

A2 , the operator is called idempotent, or a projection-

= operator. Because in our example A serves to transform a

sentence x into a sentence y = Ax, it is natural to look for a

representation of A in terms of customary mathematical
representations of linear transformations. These are nxn ordered

sets of numbers called matrices (n is called the order of the

matrix) which have the associative rules for multiplication

AI(A 2 A3 ) = (AIA2 )A3 = A1 A2 A3 as required by our system. The

idempotent transformations are naturally represented by a very

special type of matrix representation called dyadics or outer

products of vectors. All these topics are developed

systematically in the following sections.

Truth and Negation Operators

In this section an important special case of cognitive

system is developed. In a sense, it is an absolute system of

knowledge, in contrast to the system of finite knowledge as

discussed before. Recall the definition of A appliud to the

sentence x:

Ax: "I can show that x is true."

10
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In order that the statement Ax be valid, the speaker A must

be willing, upon request, to make back-up stater1 Lents A (Ax), A (A

(Ax)), . . . etc., as discussed earlier. All this was implied by

Ax, since A = A A = A A A = . . etc.

Once Ax is valid, it must be that "x is true" also is a

valid statement. The following two notations are introduced:

Tx: "x is true"

Nx: "x is not true" (or "x is false")

First, notice the difference between Ax and Tx. The

statement Ax; "I can show x is truc" requires some kind of proof

which depends on the knowledge A, the speaker, possesses. In

other words, speaker A has a subjectively (or privately) oriented

procedure for proving Tx: 'x is true', whereas Tx is a statement

of fact which obtains an •absolute' character, once *x is true*

has been proven beyond any doubt by at least one cognitive system

A. Also, the validity of Ax cannot be shown for every
proposition x which happens to be true, since a cognitive system

A is, by its very nature, limited. Speakers with knowledge A

will not be able to pass judgement on every true statement
x. Recall the quiz option Y3 :

Y3 : "I cannot show that x is true, or that x is false."

of the preceding discussion, which illustrates this point.

An obvious example of the limited nature of personal

knowledge is for a speaker A to be confronted with a true

statement x in an unfamiliar foreign language.

This recalls the further possibility that x is a "true"

sentence in some extinct language, not presently known, or

pi
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understood. Can x be labelled "true" in such a case? The

significance of the absolute statement Tx: "x is true" has to be

adjusted to disallow such cases, since obviously, there is no

method by which "x is true" could ever be proven valid here.

Another definition, instead of Tx, seems to suggest itself:

Tlx: "One can show x is true"

with the further understanding that "one" in this sentence must

be some authority with a cognitive system Ao who is part of a

community of scholars with knowledge Ai and who can show Aox to

be valid. For that case, the statement Tx: "x is true" is an
"absolute" truth, which has validity only with reference to the

class Ai of cognitive systems considered. This actually is the

typical situation for open systems in the physical sciences which

were discussed earlier.

Henceforth, Tx: "x is true" will be considered to have

meaning only in the latter sense, i.e., Tx has meaning only

within a class Ai of cognitive systems to whom a proof of

-validity must be available and accessible.

Returning to our formal discussion of Ax, Tx and Nx, it was

found: Ax implies Tx; Ax + Tx, but the converse obviously is

not the case, since A has finite knowledge.

Next, putting y = Nx: :x is not trae" (or "x is false")

then Ay = A (Nx): "I can show 'x is false', is true" or simply:

2= ANX: "I can show x is not true" = "I can show x is false"

where a shorthand notation AN is used* to denote the operator

working on x, and the second option of the quiz entries discussed

* Later it will be shown that AN and AN are not exactly the same
operators.

12



previously is recognized. One consequence of the above statement

is that from ANx follows Nx or, formally: AN(x) + Nx.

Consider the last result as a special case of the previous

one Ay + Ty, where y = Nx. From this observation, T Nx = NX

for all meaningful x and hence T N = N is an operator identity.

Since Nx = "x is false" = "x is not true" = N Tx applies, also,
for all meaningful x, N T = N is another operator identity.

Similarly, T T = T can easily be verified as an operator

identity.

The only remaining multiplication rule to prove is:
N N = T. This statement reflects the fact that for every

sentence x which happens to be true: Tx: "x is true", a

sentence y = Nx can be constructed which is false; therefore,

Ny: "y is false", is valid. Hence the last statement Ny is

just another way of stating that Tx is valid: Tx = Ny = N Nx for
every allowable x, from which follows N N = T

From the above discussion, a general principle was found;

for every allowable or meaningful statement (proposition) x,
either Tx: "x is true", or Nx: "'x is false' is a valid

statement. The fact that for every x statement a corresponding y

Nx (conjugate) statement may be constructed has been

established. All the above results may be summ -ized in the

"multiplication diagram" shown in Table 1, which applies to the

so-called "absolute" system T:

TABLE 1. MULTIPLICATION DIAGRAM FOR ABSOLUTE SYSTEM T

T N

T T N

N N T

*Onl.y a propositional statement x which can be used in the quiz
situLation discussed earlier is considered.

13
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The diagram should be read as follows: Start with an entry

from the left-hand column and multiply by following tihe arrow

with one of the upper row entries of the diagram. The answer is

to be found in the corresponding square of the block enclosed by
the entries.

Notice at once that the (T, N) operators form a commutative

group with identity T. Furthermore, since T T = T, the operatov

T satisfies the fundamental idempotent law for a cognitive

system, and thus T may be considered as a limiting form, or an

absolute system, of all the knowledge contained within a set of

cognitive systems Ai with which it is associated. Compare this

with our previous discussion concerning set Ai.

Note that N does not behave as a cognitive operator (N N

N!). In order to underscore these points, the following four

definitions relating A and N are presented:

Definitions:

Yl = Ax: "I can show x is true"

Y2= ANX: "I can show x is false"

Y31 NAX: "I cannot show that x is true"

Y3 2 = TAX: "I cannot show that x is false"

The statement Y3 . as previously defined, is a combination of the

last two statements, Y3 1 and Y3 2 " If both NAX and TAX are valid
statements, then the cognitive system A is ignorant of x; the "I

don't know" entry on the quiz applies. On the other hand, NAX

could also signify that Nx: "x is false" applies and similarly

TAX could indicate that Tx: "x is true" is the case. The

14
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statements Y3 1 and Y32 are interesting, since they express a
certain ambiu . What precisely is said when someone says: "I

cannot show that --. "? On the one hand, the statement is

perfectly sensible, it has a well-determined significance. On

the other hand, there is a certain vagueness about what this

significance signifies.

The statement TAX: "I cannot show that x is false" shows

that the speaker lacks an ability, i.e., the ability to prove

that x is false. The speaker might be not completely ignorant

regarding x, since the sentence could imply that the speaker can

show that x is true, but leaves this possibility open. The

speaker creates a certain puzzlement on the side of the receiver

as to what the intentions really are. In many typical cases of

expression of human, finite knowledge, this ambiguity is present

and indeed plays an important part in communication.

Another interesting consequence of this is: suppose

statement x is true; hence, Tx is valid. Then if someone says:

TAX: `i cannot, show x is false"+, a valid statement is made, even

though the speaker might not even understand the significance of

x1 One is thus forced to conclude that the set of sentences x

for which x is true, which designated p (T), is a subset of the

I set .(TA) for which TAX applies!

The same argument applies to the conjugate case:

ii(N) C= 11(NA), where Q is the sign of inclusion.

Thus, an important inclusion scheme connecting the various

sets of statements is discovered:

p(A) 1_ 1 (T) p (TA
A

and 11(AN)• .(N) C- 1i(NN A

Notice the curious fact that the "truth set", U(T), lies

between the sets p(A), of sentences x for which Ax is valid, and

15



the set p(TA). The set p(TA) is clearly larger than •(T) I

The reason for this i(TA) could contain sentences x

which are false (1) and hence Nx applies. This is easily

verified from the statement: TAX: "I cannot show x is false",

i.e., it could be that x is false but I can't show this. All

these conclusions are somewhat surprising results which follow

from the ambiguous statements: TAX and NAX.

Later the operators TA and NA will be found to indeed have a

basic significance. They express "truth" and "negation" within

or for the associated finite cognitive system A! The results of

this section can best be summarized by the diagram in Figure 1.

Figure 1. Relationships Between Sets of Sentences

The diagram depicts the various sets of sentences x:
p(A), LI(AN), II(TA) and P( for which, respectively, Ax, A~x

TAX, and NAX are valid statements. Notice the symmetry between

sets p(A) and IJ(A) and similarly between V(TA) and p(NA). The

set p(T A includes i(A) but not (AN N and incorporates also

16
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all of the "unkn wn" area ouLside of p(A) and pI(AN).

Similarly, V (NA) includes j (AN), but not P(A), and itA N
includes also all of the unknown x outside of the "I can show ..

group p(A) and p(AN).

The Notions of Truth and Falsity are not Svmmetric

In conventional logic, the notions of truth and falsity are
"considered as symmetric operations, similar to the binary
position of a switch. A binary switch has positions which are
either "on" or "off" and similarly some proposition x can be
"true", in which case Tx: "x is true" applies, or "false", in
which case Nx: "x is false", applies. The idea of symmetry
arises from the fact that for every sentence which is true an
equivalent sentence can be constructed which states the same
thing but which is false.

* - Of a red ball it can be said: "This ball is red," which for
th.iL case is a true statement, but it can also be said: r'Tris
ball is not red", which is then a false statement. If the fact
that the second statement is known to be false is added, this can
be expressed by saying: "This ball is not, not red," which is now
equivalent to: "This ball is red."

This property of symmetry and the analog with the binary

switching arrangement has led to the erroneous conclusion that

the statements Tx and Nx, and hence the associated operators T

and N by themselves, also must be symmetric in nature (i.e., that

they can be represented by +1 and -1 as in a binary operation).

Consider the two statements:

Tx: "This ball is red"

and Nx: "This ball is not red"

17



Both statements may be independent of each other, i.e., two

different balls may be under consideration. Clearly, the

statement:

Tx: "This ball is red"

contains vastly more information than the second statement:

Nx: "This ball is not red".

The Tx statement makes a factual commitment., whereas the

statement Nx still leaves us in the dark as to the actual nature

of the color of the ball. All that is known in the last case is

*_ that the ball is not red, but it might still be blue, green, or

yellow. Hence the N-statement has a very limited commitment

range!

This may be one of the rpaqons why it is so much easier, in

U real life and in general, to say: No! It is easier because

saying "no" does not commit one as strongly as saying "yes"!

This property is reflected in cognition because T = T T satisfies

the cognition requirement, but N * N N = T does not. From this

follows that the T and N operators cannot and should not be

represented by a binary plus and minus operation scheme, since

they are not symmetric operations.

In the following section, this distinction will be made even

more apparent through an algebraic argument, which leads

naturally to a representation of the T and N operators.

Decomposition of Truth and Negation Operators

The multiplication diagram, shown in the previous section,

gave basic rules for adjoining T and N operators. Closer

observation of the diagram shows, however, that a simpler and

perhaps more basic system must exist. In mathematics it is

18



customary to intcoduce linear transformations to reptuselt an

operator. This relates to a choice of suitable basis or

reference system which gives the represuntation of the operator a

most simple and suitable form. One favorite trick is to choose a

transformation of the operators such that for the transformed

case the multiplication diagram becomes diagonal. This is

interpreted such that all terms in the diagram, except on the

main diagonal, will be zero.

It is easy to construct such a tLansfo•rmation for the T and

N operators. The following transformation is proposed:

Definition:

T = U + V

N U- V

The U and V operators now are the transformed operators which

replace T and N. Instead ot the T, N multiplication diagram, the
following multiplication rules between U and V are proposed:

TABLE 2. MULTIPLICATION DIAGRAM FOR THE TRUTH SYSTEM

UTILIZING U AND V

F÷ U V

U U

V V

It is observed that, indeed, the U and V table is diagonal since

Sserves to indicate "zero", i.e., U V = V U = j. In

mathematics, if multiplication between two operators gives

zero", it indicates that they are independent of each other, and
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-°"-.they may be called orthogonal, after the terminology in vector

algebra. Hence, U and V are independent operators. Furthermore,

"each satisfies the basic rule for cognitive systems: U U U and

V V V. All that has to be done in order to verify that indeed

T and N satisfy the ordinary relationships is to substitute and

apply the new multiplication rules. For example: T N = (U +
V). (U - V) = U [1 - V V = U - V = N. The reader can verify that

T T = T, N N = T and N T N by using a similar procedure.

A very important and very basic conceptual point is now

considered. Consider the relationships:

< •T =U + V

SSuddenly addition and subtraction of operators occur in addition

to multiplication! The logical "and" will b( designated to the +
(plus) sign and something like "and lack of" will be assigned to

the - (minus) sign.

Meaning to Ux and Vx will be assigned such that

"Tx = Ux + Vx: "x is true"

Nx = Ux - Vx: "x is not true"

-.- .remain valid.

The next step consists in trying to discover a meaning for

the symbols Ux and Vx. The simplest seems to be the

identification of Vx, since + Vx suggest "truth" for x of some

type and -Vx suggest "lack of truth" for x of soire type. These

interpretations approach very closely to the meaning of "x is

* true" and "x is false".

In order to make a precise distinction, the following

"definitions are proposed.

20
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Definitions:

+ Vx: "x is objectively true"

- Vx: "x is objectively false"

In other words, +Vx means the fact that x is true can be

objectively asserted (someone has an accessible proof for x).
The latter phrase agrees with our previous discussion regarding

*• the significance of "x is true" with relationship to a set of

"cognitive systems Ai.

Next, Ux needs to be given meaning. Notice that Ux appears

both as part of Tx and Nx and U is independent of V, such that Ux

is independent of "the objective truth of x." Hence, Ux asserts

something about x which is independent of its truth content. But
surely, x must exist, before a truth verdict can be given to

it! The following definition is proposed:

Definition:

Ux: "x exists"

Sensitive philosophical grounds are now involved. What does it

mean for a thing to exist? Perhaps it can be agreed upon that a
rock exists, but does a number exist, does a phrase exist, and

what about: x: "The present emperor of France wears a red hat";

does that statement exist? Interesting philosophical literature

exists on this subject At the moment, all subtleties will be

avoided and a naive viewpoint will be taken. As the theory
progresses, refinements and modifications of our interpretation
will be introduced as it seems appropriate and necessary.

* Reference (2).
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The naive interpretation of Ux; "x exists" is simply that x

must be available or accessible in some way and that x has an

appropriate meaning or significance as a well-defined entity in

"the form of a propositional sentence. These all seem logically
necessary and perhaps sufficient conditions which any reasonable
x must have, in order that an objective label Vx of "true" or

"false" can be attached to it.

The significance of Ux: "x exists" could be pushed a bit

further if x is a statement about an object. Then "x exists" can

be interpreted to signify a reference to the object itself, and

it can be inferred from "x exists" that "the object exists." On

the other hand, if "the object exists" then the sentence x
referring to the object must have meaning and hence, "x
exists." From this follows that for this case: "x exists" and

"the object exists" are identical statements.

For example, the true-false relationship is often compared

to a binary switching arrangement. Hence, if x is the
sentence: "the switch is on," then Tx: "x is true" applies if
indeed: "the switch is on." If "the switch is off" then Nx: "x

is false" would apply. In this particular case, what is

"constant" in the sentence x is the phrase "the swi'tch", and
Ux: "x exists" can only be the case if "the switch exists" is a

valid statement, in the sense of: without "switch" there would
be nothing to switch "on" or "off," and no statement x could
refer to it! For this case, it would be appropriate to have for

x: "the switch is on," the following interpretations where it is

assumed Tx is valid:

Tx: "the switch is onf."
*Nx: "the switch is off."

Vx: "one can verify that the switch is on."

Ux: "there is a switch."

I
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The usual method in dealing with the switch analogy above is

to assign integers i1 to "on" and -I to "off" positions. (This

is common practice in computer algorithms, for example.) The

fact that there has to be a switch in order to make the algorithm

work is usually taken for granted and hence, the Ux aspect of the

situation is usually ignored.

This points out an important fact of the decomposition T =

U + V; V refers primarily to objectively assertable truth, while

U refers primarily to subjectively assertable existence or
being. That is, the fact that the switch is "there" has to be

asserted by a subject who actually is confronted with the

situation of verifying the position of the switch.

All that seems implied by the statement Ux: "x exists" and

usually, in the objective mode of dealing with a subject matter,

this co-called "existential" mode is completely ignored. This

observation will be a recurrent theme in subsequent

investigations.

Language as an Objectification Process

Since almost everything that is known is expressed through

the use of verbal or written expression of language, it seems
appropriate to study the language process in some detail and

analyze its function in communication. Let us start with a
simple example: I hold a cup in my hand and someone starts a

conversation about its content: "You like your coffee black?" or

"Is it not too hot?" These questions refer to common knowledge

about a cup in general and its useful function in life. The
dictionary definition of "cup": "A small, open container for
beverages, usually bowl shaped and with a handle," suffices to

provide an objective understanding. Anyone wanting to refresh
his memory of cups can consult the dictionary, as I just did.

But how does the dictionary definition relate to the real

cup I have in front of me? I notice that my cup is more
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cylindrical than bowl shaped. It also has flower patterns on its

side which the dictionary does not mention.

A little reflection will convince us that what the

dictionary does is to provide us with the most essential type of

information that is necessary to define the cup in general, but

it does not even claim to attempt to describe my cup.

If I were a poet, I could attempt to capture th essence of
my cup through language by using poetic imagery. Even that may
fall short of the total awareness I have by holding this cup up
to my attention at this moment. Clearly my experience of the cup

event is a subjective one, whereas the dictionary definition
provides objective knowledge, accessible to all. In
communication one generally uses objective (common) knowledge to
describe real events, in contrast to the real-world experience of

the event itself. If we both witness the same event, there is no
need to communicate this, aside from the above mentioned
difficulties one encounters if one tries to do this in detail.

Hence the use of language may be considered as a mapping of
the real-world event situation onto an objective framework. By

doing so, something has happened to the original event: It has
lost the uniqueness of its being there (called Ux in the

theory). The dictionary is a mapping of all common real life
knowledge of objects or events onto the organization of words and

pages and paper which is the dictionary. The dictionary gives us

an objectified definition of our cup; it cannot present us with
the real cup. That this must be so is due simply to the fact
that the dictionary is available to all.

The "objectifying" property of common language has serious
consequences for our processes of understanding. By continually
"abstracting" events we are in danger of loosing track of

understanding the significance of a real-world event. The real-

world event is related to my presence as an observer to witness

the event. Many >,hilosophers of East end West have pondered

24
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these questions and have come to the conclusion that the real-
world event situation is something of a mystery. This is but

another way of saying that objectified knowledge and

understanding cannot grasp the significance of the real-event

case (we can see how this applies in probability theory). We
could quote a large volume of literature on this subject, from

Zen Buddhism, the ancient Mystics, Hegel, Kant, Kierkegaard,
Marcel (The Mystery of Beina, Vols I and II), Husserl, Heidegger

and a host of others. The trouble with all this activity,
obviously is, that it is itself expressed in language! How can
we express in language something which cannot be expressed in

language?

Such logical puzzles have plagued much of modern philosophy,
to the extent that some (the logical positivists and some
linguists) will deny any meaningful discussion of what we would
call "reality"! If the whole world becomes objectified, then
there is no place for reality because an objectified world is a
possible world and cannot be the real world we live in.

Is there a fool-proof method for knowing that a real world
does exist? The answer is yes, but we will never succeed by
using purely rational arguments! Then, why not break the

consistency of logical discoursel The way reality is usually
impressed most vividly upon us is if we make a mistake. We lose
a key only to find it back the next day on the couch. The event

takes place without a logically consistent knowledge of the
whereabouts of the key. Finding the key impresses upon us and
restores to us our confidence about the continuity of the real
world. This is how reality is "found" and rediscovered. Notice

that the process above works because no linguistic modes of
expression are used to achieve the desired result; only actions

are necessary.

25



Objective Truth and Being

There is yet another way to interpret the decomposition T =

U + V and N = U - V which is perhaps more "technical" and hence

less "mystical" and, thus, easier to understand. We commented on

the use of language and the difficult~ies one encounters because
of the natural objectifying tendency language posesses. Language

must express itself through written or spoken symbols which by

their very nature and purpose must be understood by all (who

engage in the communication) and hence must be objective in

character. On the other hand, what is experienced is private and
"singular. By trying to communicate to others what I have just

experienced I must try to "objectify" this experience. In
mathematical terminology, we call this process a mapping of event
x onto an objective framework, expressed by Vx: "x is

objectively true". We can think of statements like: "This is a

cup", "The cup is cylindrical", "The cup has flower patterns on

--- its side"; "This cun has no handle". etc. In fact, almost

everything I have experienced can thus be brought into an

objective framework.

Why do we call this process "objective"? Simply because all

the statements above itself are symbolic representations of
something real. A "cup" is not a real cup; it is a word
consisting of three letter symbols, which is the projection of

the real-world cup: x onto the objective representation: Vx:
- "cup". By the way, this is why V = V V is called a projection

operator. Similarly UU = U is a projection operator. But we

notice a curious difference if we compare the two types of

projections:

Ux: "x exists"

Vx: "x is objectively true"
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We notice that while Vx may be used to express numerous
properties of a real object such as a cup, the statement Ux: "x
exists" seems singularly impoverished by comparison! Ux seems

only to refer to one property of a real-world object x: its

unique existence!

Another way of saying what we just have found is that almost
everything of a real-world event x, related to its truth content,

can be objectified, the singular exception being its factual
existence!* A little reflection will convince us that this
result is indeed very plausible. If I consider my own situation

as a real-world event, then everything around me can be
"objectified" or generalized. I even can look in a mirror and
see myself as others may see me. I am "a person" just as I see
other persons. This is the objectified picture I can develop for

myself. However there is one quality missing in this picture: I
am this person which I see in the mirror. The fact of my being
myself cannot be generalized, because I cannot transfer my being

to others. Obviously I can generalize the concept of being to
others, but, in fact, I am stuck with my own being, with what and
who I am and this fact cannot be generalized!

This is really what: Ux: "x exists" tries to express in
mathematical terms. It refers to the individual, private, real-
world fact of being of event x. The equation Tx = Ux + Vx hence

expresses a decomposition or projection of x into two orthogonal
spaces: One is the "truth - objectifying" space V, whereas U
contains only one singular aspect of x: its real-world

existence.

One notices how simply the algebraic expression describes
the process compared to the almost desperate and frantic verbal

*Later on we will find how this rule can be expanded for a finite
system A, to include all objective and all subjective experience.
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expressions of the philosphers! The verbal effort, by using
ordinary language, is almost incomprehensible in this case,
because language itself has the objectifying quality built into

it, and the U-frame, by definition, escapes any attempt at
objectification. It is no wonder that in a society, which is
raised on objective-only concerns, there will be a tendency
towards neglect of subjective concerns. The present work on
cognition is an attempt to restore some of the imbalance, by
presenting a self-consistent algebraic scheme which incorporates
subjective as well as objective elements of knowledge.

Decomposition and Significance of Cognitive Operator

In a previous section, the "truth" and "negation" operators
T and N were expressed in a natural way into an existential
operator U and an objective truth-related operator V. It seems
natural to expect that the same procedure will apply for the

finite cognitive system A.

Following this suggestion, A and AN are decomposed as
follows:

A =S+Q

AN = S - Q

Recall that A and AN were the statements equivalent to T and N,
for the finite case, where:

Ax : "I can show that x is true"

ANx% "I can show that x is false"

For the S and Q operators, the following rules are assumed: S S
* = S and Q Q = Q and the rule for independence: S Q = Q S =

The definitions for Sx and Qx are now easily found in analogy to
Ux and Vx for the absolute system. First, the cognitive system

requirement A A A is verified:
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A A = (S + Q) (S + Q) = S S + Q Q = S + Q A

Now, a new rule for AN AN can be derived:

AN AN = (S - Q) (S - Q) = S + Q = A

As expected, AN is not of the cognitive system type. Also, A AN
- AN A = AN. A definition will now be presented:

Definition:

SX: "I understand x."

This is to be interpreted as a subjective evaluation regarding

the significance x has for the spectator (the subject, "I").

Now, Qx is interpreted as follows:

Definition:

Qx: "I can prove x."

Qx indicates that there is a definite objectively valid procedure

by which the subject "I" intends to prove x. Hence,

Ax: "I can show S is true" =

"I understand x" and "I can prove x."

If A = S + Q indicates the cognitive system, then S is
called its subjective support anC Q (for quest of truth) stands

for objective truth in the finite model.

The decomposition of the cognitive system A into natural
subjective and objective components provides greater insight into
the structure of the system itself. The subjective part S
provides the necessary support to the system of knowledge, by
which significance and meaning of the issue at hand are evaluated
in terms of individual interaction.
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If someone yells: "Watch out for the car!", the signifi--

cance of the issue to survival of the individual is clear, and

evasive action is essential for preserving it. The support

mechanism S not only provides significance to the self based upon

evaluation of primary data relating to the event, it also

organizes a course of action to be taken if action is deemed

necessary. Q is the operation which executes the plan of action.

Take, for example, a mathematical problem in geometry. Let

Ax: "I can show that 'theorem y' is true", where x = "the

theorem y" = "the Pythagorean theorem." Now, Sx: "I understand

x" has to be interpreted as follows: First of all, the speaker

grasps the significance of the theorem and knows how the theorem

relates to other facts in geometry, i.e., lines, triangles, right

angles, etc. But "understanding" in this context requires

more. The subjective self S which is part of the speaker's

knowledge must be able to devise some scheme of attack. The

scheme mi-ay be Qumbersome or elegant; this depends on the

difficulty of the problem and the speaker's personal subjective

skill in geometry.

Now, the objective operation Q is put to work, the program

or plan of attack which S has devised is executed by Q (Q

executes S's will), and the result of this action is recorded in

the form of a verdict: true if the action indeed results in a

proof of the theorem, in which case Ax above applies.

The given description fits the proposed designation of Sx

and Qx:

"Sx: "I understand x"

"and Qx: "I can prove x"

"As it is described, the role of S is that of a superior orI
supervisor, whereas Q's role is that of an executor. Q executes

the plan of action or the force of the will which S imposes.

The analogy with computers is evident: The S function is

carried out by the scientist-engineer team, the Q part is

30
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represented by the programmer-computer unit which executes the
program. In this instance, the scientist's part of the S-
function is to present a meaningful description of the task at
hand to suggest a course of action. The "engineer" part

- translates the scientist's ideas into a specific task. The

programmer translates this task into computer language, while the
machine provides the computed result or output.

The fact that the scientist-engineer's task is called
subjective should not be interpreted (as is often done) that this
action is arbitrary or frivolous in some way, and that the action
is not guided by sound objectively assertible principles and
facts. The action is implied to be subjective because there is
some personal involvement necessary, first to present the case as
a meaningful task within the context of the "life-situation" at

*- hand, and secondly, to produce, out of the maze of possibilities,
a course of action which will resolve the problem created by the
issue.

Notice that the S, Q distinction in the analogy cannot be
drawn sharply, since the programmer's subjective, independent
judgement will be used to decide how best to implement the
computer task. All this is quite in agreement with the theory
and is to be expected, since the programmer, as a cognitive
system, possesses subjective as well as objective skills. The
computer, being a machine, can be said to have only pure,
objectively related Q-type functions.

These results show that with the few mathematical
developments thus far attained, many interesting, sometimes
controversial, conceptual issues have already been examined. The
above sketched man--machine distinction is one such issue. The
theory indicates that a true cognitive system must possess a
subjective as well as objective part, while a machine, at least
in the present stage of development, has only objective
functions.
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It. is the task of the subjective "self" of a person to

provide meaning and significance to issues. Most present

scientifically oriented doctrines are unable to cope adequately

with subjective concepts largely because of lack of a scientific

framework to discuss and approach these subjects.

Science has been very successful with the so-called

"objective" approach, which means that scientific results are

recorded objectively, i.e., in a manner accessible to anyone, and

such that its truth content can be verified. All personal

feelings and emotions, hints, hunches, attempts which led to

failure, etc., which reflect the subjective aspect of scientific

reasearch is carefully shunned and eradicated from the final

"ideally correct" record of scientific investigation. The valid

idea behind this approach is that all that counts (except for

historical anecdotes) is the objective record of an event which

now becomes part of a community of knowledge.

The only danger this attitude presents is that if too much

exclusive emphasis is placed on objective presentation, 'he

subjective element, which is an essential part of human

intelligence, becomes the stepchild who suffers from abuse,

misunderstanding, lack of nourishment, and loving care.

A slightly different viewpoint can throw additional light

upon the distinction between "subjective" and "objective"

attitudes. The objective aspect of knowledge deals primarily

with "possible" situations, or "possible worlds." It is in the

nature of scientific presentation to deal with issues as members

of a class of similar issues. For example, with a rock in hand,

one can make the observation "this rock is hard." Translated

into objective terminology "hardness" of rocks can be made a

precisely measurable scientific quantity. By doing so, all rocks

can be classified according to the number of units of hardness

they possess. All this activity tends to draw away attention

from the fact which the speaker was originally confronted with:

This rock "feels" hard.
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The "objectified" rock now becomes a member of a class of
rocks, each of which has a property called "hardness," The
actual rock has lost, as it were, its uniqueness, which
characterized the event of holding the rock in one's hand,
instead it has become a member of a class of rocks. Scientific

presentation is solely interested in this type of class-
membership. An actual, factual object, becomes a possible
object, only to be dealt with as an accidental member of a class
of possible similar objects.

The reason for this is that for a possible world to become
an actual world, a subject has to be present which evaluates and
decides to act upon the actual world. In science, such a subject
is called an observer, investigator, or scientist, who delivers
the support function S which enables him to evaluate and perform
experiments on actual events.

The neglect of the subjective aspect of knowledge of human
beings can lead to serious failures in modeling structures which
involve human, and generally biological, activities such as are
found in teaching, economics, psychology, medicine, religion,

family life, the arts, etc.

These failures can be attributed to a failure of
philosophical intent, due to the incapacity to deal adequately

and in a clear, precise, concise manner, with issues relating to
the subjectivity of the subject. The greatest loss is found in

the failure of the scientific-objectively trained person to
comprehend himself, as actually existing in a real world.

Internal Communication Processes

The art of communication consists of conveying to someone
else, a willing observer or listener, the status of an event x,
as one has interpreted this for himself.
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Previously, it was found that this interpretation is

contained in one of the four statements about x, where x in our

case is a proposition*

Ax : "I can show x is true"

ANX: "I can show x is false"

TAX: "I cannot show x is false'"

NAX: "I cannot show x is true"

Each of these statements carries the message of an interpretation

to follow up with a backup interpretation which result is

expressed by the new statement. For example: A (Ax). "I can

show that, 'I can show x is true,' is true." In fact, since A A

= A, this backup interpretation is already implied by the former

statement Ax. Similarly, since A(ANX) = (A AN) x = ANX, the

affirmation or backup of ANX does not change the status of ANX.

But what about A (TAX) or A (NAX)? Consider A(TAX); TAX

expresses a certain ambiguity of opinion regarding the status of

x. If the backup, clarification, stetement A (TAx) is used, what
does this signify? If the "ambiguous statement" is shown to be

true, it must be that the ambiguity has been resolved, and hence,
A (TAX) = Ax applies. Later on, that this indeed is the correct

interpretation will be proved. Hence, it follows for the

operators:

A TA = A

* Other logical systems such as Zeman [3] and Prior [41 define
operators Mz as "possibility" and Lz as "necessity" where Mz
N LN. These can also be incorporated within the presen theory.
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Notice here a curious fact. The backup affirmation of TAX alters

the original statementl In this case, the affirmation of TAX

clarifies the originally ambiguous statement TAX- It removes the

ambiguity to indicate that after all Ax: "I can show x is true,"

is a valid statement which was already known when TAX was stated,

or which validity was derived later on.

A similar analysis shows that; A(N A and hence, inAx) Nx
general:

A N AA N

The above exar,--ples give cases where the backup statement perhaps

modifies the original statement, but- it does not contradict what

has been stated before.

One can easily produce examples where such cont.radictions do

occur! Since the identity A A AN was derived previously, aN
clear case of contradiction is recognizea. The original

statement was an opinion of x; Ax: "I can show x is true," while

the next opinion (one can now no longer speak of backup here)

is: A (Ax): "I can show, 'I can show x is true,' is falsel"N
which indicates that ANX: "I can show x is false" now applies

and this is in clear opposition to the first statement: AxI

At first impression, such a "change of opinion" seems

impossible, since Ax assumes an infinite regress A A --- Ax, by

which one can prove the first statement with any degree of

accuracy and sophistication conceivable. In the vast majority of

instances this will indeed be the case and a change of opinion

AN(Ax) = ANx seems very unlikely. The question here is not

whether the above statement is likely, but whether it is

logically possible!

All that has to be done is to change the infinite regress

idea above to the realization that, in practice, there can only
be finite number of steps. Now, the finite regress A A Ax,
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by which the original assertion Ax was made, does not preclude

logically the possibility of change of opinion at some stage,

since L finite sequence, by its very nature, must terminate.

SThus, a change of opinion AN A A --- Ax = ANX remains open as a,

perhaps infinitesimally small, possibility. The fact that there

is no absolute certainty that "x is true" has important

"consequences for the notion of "truth in a finite system of
knowledge," as shall be seen shortly.

Having thus clarified the status of AN A = AN operators, one

can now proceed with the identification of the remaining

combinations of operations. The results are summacized by the

multiplication diagram in Table 3.

* TABLE 3. MULTIPLICATION DIAGRAM FOR THE COGNITIVE

SYSTEM UTILIZING A, AN, TA, AND NA

Original first statement

A AN TA NA

A A AN A AN

AN AN A AN A

.1 4.)
--1 rJ2 S TA TA NA TA NA

0

NA NA TA NA TA

The upper row indicates first statements while the left-hand

column indicates follow-up statements applied to the first one.
The resulting combined statement is contained in the

corresponding box, as indicated.

36



The reader is invited to verify the fact that "ambiguous"

follow-up statements TA and NA working on any of the first

statements can only result in final ambiguous statements. For

example, if Ax: "I can show x is true" applies as first

statement, and then say; TA Ax: "I cannot show that; 'I can show

x is true,' is false," a definite impression of uncertainty

regarding the original intention: Ax is presented with the added

possibility of: "I don't understand x," after all. Hence, Ax

transforms into TA (Ax) = TAX as shown in the box.

The multiplication rules, given here, provide the logically

consistent connections between the four logical operations. The

table not only shows these connections but also serves to define,

in a precise manner, the logical nature of the operations.

The previous discussion has emphasized that, "truth in a

finite, cognitive system," cannot be defined with absolute

certainty; there is always a, perhaps infinitesimally, small

chance that Tx: "x is true" has to be modified into Nx: "x is

false." In other words, "truth in a system A" cannot be

represented by an absolute T, independent from A and similarly

"negation of truth in A" cannot be an absolute negation N, which

is independent of system A.

A glance at Table 3 reveals to us, at once, what then 'truth

in A' should be. From Table 3 we easily verify the structure

diagram given in Table 4.

TABLE 4. MULTIPLICATION DIAGRAM FOR THE INTERNAL TRUTH

SYSTEM UTILIZING TA AND NA

TA NA

TA TA NA

NA NA TA
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This diagram shows the original (T, N) multiplication table with

T replaced by TA and N replaced by NA!

TA can now be identified with "truth in system A" and NA

with "negation in system A." Next it is verified that TA and NA

indeed function as required of these intuitive notions. This

follows from the fact that ANX: "I can show x is not true"

and: (A NAX): "I can show that: 'x is false,' is true," are

identical statements. Here "x is false," which is spoken in the

context of the finite system A, is to be interpreted, not as an

absolute negation: Nx, but rather as NAX = "negation of x in

system A." In order to distinguish cases, henceforth TAX: "X

is true in A" will be written and similarly NAX: "x is false in

A."

The original four statements are now written as follows:

Ax = A TAX: "I can show 'x' is true" =

"I can show 'x is true in A' is true."

A x A N AX: "I can show IxI is false"

"I can show 'x is false in A' is true."

TAX = NA A NAX: "I cannot show 'x is false in A' is

true" =

"x is true in A" = "x in A" is true.

Notice that formally the operation A is expressed by:

-- A .. = "I can show .. is true."

* This clarifies the fact that AN and AN are riot the same

operators.
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Where the --- position may be taken by NA interpreted as "not"

and .. is an expression of the kind shown above.

From the fact that Ax is valid, TAX follows and from ANX

follows NA or symbolically:
A 4 TA

AN + NA

This result is in complete agreement with earlier results, which

produced:
A + T + TA
AN + N + NA

What is shown here is that so-called absolute truth and negation

are logically contained, but not conceptually used, as notions of

"truth" and "negation" in the finite system.

What then remains of "absolute" T and N? They are to be
interpreted as symbols which are operative within a communitiy rf

systems of knowledge: Ai. The symbols simply indicate Tx: "x

is true" or Nx: "x is false" as the "status of x", which obtains

its significance only from the fact that momentarily Aix or AiN

are valid statements.

Later, the details of the transfer of information within a

community of cognitive systems (scholars) is discussed. At a

certain stage of development, it can be assumed that a certain

concensus will be reached, such that, for a majority of scholars,

given the statement x, Aix applies. In this case, "the truth"

statement is that TiAX: "x is true in Ai" is the case, which

leaves open the finite possibility for error.

The stronger statement Tx: "x is true" which also follows

logically from Aix can under these conditions no longer be

considered as an "absolute" expression of truth regarding

statement x, because a finite chance may exist that the statement

is in error. Tx is preferred to indicate the fact of having
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obtained the status: "x is true." Later, more convincing

arguments will be found to show that this indeed is a correct

interpretation.

Truth in the Empirical Sciences

In the introduction it was stated that knowledge is somehow

related to a statement of truth about an event x. In the last

section a curious fact was discovered -- that each cognitive

system carries its own notion of truth; TA; where TAX: "x is

true in A," and NA: "x is false in A," are proper designations of

truth and negation within system A.

This notion of truth has a built-in ambiguity, which seems

at first rather puzzling because for every statement x for which

TAX: "x is true in A" is the case, there -is a finite possibility

that Nx: "x is false" appliesl We now address ourselves to

these questions.

In the first place, if A is a closed system, as in Euclidian

geometry, the A = A A --- A will terminate at some point with a

statement of truth referring to the axioms of Euclidian

geometry. Hence, if x is a theorem to be proven, Ax = A --- Ax

will terminate with Ax; "I can show theorem 'x in A' is true,"
which is now reduced to a statement of "truth of x in A" based

upon the accepted truth of the axioms.

The assumption is made that A does not make mistakes, i.e.,

that the method of proof indeed is objectively valid (this is

what Ax is valid implies). By this is meant further that there

is an inner consistcnc within system A, which is not broken by

A's approach to the proof Ax. Hence, if Ax is valid, and the

procedure terminates with the axioms of Euclidean geometry, then

TAX: "x is true in A" cannot result in ambiguity and Tx: "x is

true" is a valid label that can be attached to theorem x.
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"At this point, axiomatic entanglements regarding1 *
consistency, etc., of a mathematical system are ignored. The

naive viewpoint that the system is closed, i.e., that proof of-
* theorem x can be obtained without any trouble through a finite
*~ sequence of backup procedures is assumed.

It is thus illustrated that in most common procedures of

proof, the question of ambiguity in the statement TAX: "x is
true in A" has no practical significance.

But now consider an "open" system, such as occurs in the
physical sciences. One can show that for such open empirical

sciences, "the truth" is indeed correctly expressed by TA, where
the built-in ambiguity has important practical significance.

Consider a proposition x related to a scien ific
investigation. In science, such a proposition is usually ca
a hypothesis. The objective is to establish whether the
hypothesis x is true or false; this requires an experimental

- investigation. After a sutfficient amount of tests have been
* made, one may be satisfied that indeed the results of the tests

indicate that the hypothesis x is true within the context of the
investigations conducted.

These results can be summarized by making the following

announcement: NA A NAX: "I cannot show that 'hypothesis x' is
false." An analysis of an earlier section has shown that the
above statenent is equivalent to:

TAX: "hypothesis x is true in A"

SIn axiomatic systems, such as Euclidean geometry or number

theory, there exist propositions that are true or false, but
cannot be proven true or false (e.g., Goedel/Church theorems). In
this development, cognitive systems Ai are necessarily finite
and, hence, limited in capacity to prove things. In fact, they
are defined by the set of propositions which the system is
capable of proving (refer to page 15).
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Here x has to be considered in context A, which is the framework

of experimental investigation or system of empirical science.

Now it is clear that the statement TAX expresses precisely
the result of the investigation. What it expresses is that

hypothesis x has been found to be true within the context of

scientific investigation, i.e., TAX: "x is true in A." One can

state that x is consistent within system A, but there is no

absolute guarantee that 'x is true' will always remain valid!

The history of science has shown with clarity that what is

considered true at one state of scientific development may have
to be modified and indeed could become false at a later state of

development. The "open" nature of empirical scientific

development makes it mandatory that the notions of empirical

truth and negation have built-in ambiguities to account for
possible chanae of emphasis, such that there is no absolute

certainty.

,'LI .nce, the casc of an empirical science considered as an

open system of knowledge A leads to exactly the statements of
"truth in A" and "negation in A" as were developed for such a

system. We can take a further step and conclude from this that

the process of scientific investigation may indeed be considered

a system of knowledge A.

What precisely is A when it refers to an empirical

investigation? We recall that if x is a hypothesis, Ax = Sx + Qx

applies only if Sx: "I understand x," and Qx: "I can prove x"

are valid statements. But in what sense can I claim to
"understand" the procedures of an empirical investigation? The

case here is quite different from, say, a mathematical proof

system. The difference is that I have no complete control of the

events taking place, and I do not comprehend all relationships

which connect the hypothesis x with other events of the empirical

system A.
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The situation is different in a theoretical investigation.

Here we azsume control over all possible events and can act upon

them, exercising understanding. By executing judgement one can

derive a proof of certain statement x. In the empirical case, it

is impossible to state with full conviction: Sx: "I understand

x" although this might, in fact, be the case.

This inability to secure understanding fully is, in fact,

the motivation to embark upon an empirical investigation; the

unknown cannot be derived, it has to be tested. This basic

difference accounts for the fact that TAX: "I cannot show x is

false" is the correct interpretation of a successfully concluded

experiment, rather than Ax: "I can show x is true." in both

cases what is definitely not the case is: ANX: "I can show x is

false!" It follows that the correct statement of "truth in A,"

in this case, allows for the possibility of change of opinion at

some later state of development.

On the other hand, what has become of the statement Tx: 0ix

Sis true"? We associate with Tx: "to indicate a status": x is

true. Since TX = Ux + Vx, Ux: "x exists" refers to the

meaningful content of hypothesis x, whereas, Vx: "x is
objectively true" is called the label, which records the status

of x. These concepts are illustrated in more detail in later

developments.

Internal Structure of a Cognitive System

In this section, the internal organization of a cognitive

system will be developed. Our discussions so far have formulated
essentially four operations: A, AN, TA, and NA. We will show
that these four operators indeed define the full structure of a
cognitive system. We also introduced a decomposition:

A =S + Q
AN =S - Q
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which shows that A and AN can be replaced by new operators S
which we called "support in A" and Q, the "objective truth in A"

function, which executes the will of subjective support S.

The advantage of the transformation above is that S and Q

are independent operators: S Q = Q S = 0 and each satisfies the

general rule for cognitive systems: S S = S and 0 Q = Q. We

notice that the transformation satisfies the relationships:

A A =A, A AN A = AN A= AN and AN AN = A which were shown to be

properties between "truth" and "negation" operators.

Other pairs of this kind were found: (T, N) and (TA, NA). For

the (T, N) pair we had:
T-U+V

N =U- V

where U (for universe) is an "existential" operation and V

(veritas) "attaches a label" of truth or falsity. Between these
operations we have:

U2  U, U V = V U = and V2  V.

Following these suggestions, it is natural to look for a

decomposition of the third pair (TA, NA) as follows:

TA = L + P

NA = L -- P

where L and P satisfy the rules: L L, L P P L = N and
p2 = P. The new symbols L and P now determine the system (TA,

NA). Notice that L is common to TA and NA and, hence,

represents: "I don't understand", or lack of support. L will be

called the "lack" operator. It indicates insufficient

understanding:
Lx: "I don't understand"
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It may seem strange, at first, to associate with TAX: "I cannot
show x is false", NAX: "I cannot show x is true", a "lack of

understanding of x", as an essential, subjective, aspect of

statements of "truth in A" and "negation in A". Some reflection
on the status of elementary particle physics today vividly
reinforces this interpretation. These relationships with
empirical sciences and quantum mechanics will be reviewed in
later developments.

The identification of P requires rules for cross-
multiplication between operators U, V, S, Q, L, and P. First

notice that (U, S, L) form one set of "subjective" operators ,
whereas, (V, Q and P) are "objective" operators, and it can be
ruled without contradiction that corresponding operators in the
two sets are independent of each other; S P = P S = L Q = Q L

@, etc.

What about operations within each set? Here a very
fundamental set of ru•p- can be derived as follows: From TA A -

TA and A TA = A, we find:

TA A = (L + P) (S + Q) = L S + P Q L + P TA

A TA = (S + Q) (L + P) = S L + Q P = S + Q A

In working out the relationships above, we left out all products
P S, L Q, S P and Q L which are "zero" because of orthogonality

conditions.

*On page 129 of Reference 5, Feynman says: "I think I can safely
say that nobody understands quantum mechanics", The M.I.T. Press,
1965.

"**Strictly U is not subjective, but rather a general
"existential" operator.
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Now the "subjective" parts of the above result are

identified, which yield: L S L and S L S, for subjective

operators.

For a statement x this implies: L Sx L (Sx) Lx and
S Lx = S (Lx) = Sx, which indicates that the subjective operator

on the left always overrules the one on the right. In other
words, as a general rule for the subjective operators: if S1 is
the subjective support in system Al, and S2 the support function

in A2 , then it A1 interprets the statement A2 x, it cannot
p ossibjy know the subjective evaluation A? has given x: S2 x, and
hence, S1 (S 2 x) =Slx applies for every admissible x.

In general

S1 S 2 = S1

for the subjective operators. Because of these properties, this

rule is called the basic rule of inaccessibility between

subjective operators.

On the other hand, a similar rule for objective operators
will apply. Let Q, and Q2 be objective operators corresponding

to systems A1 and A2, then we may expect:

Q1 Q2 = Q2

to be the case. This rule expresses the basic accessibility of
objective knowledge.

An example will illustrate this point: If procedure Q2 x

proves x is contained in a book or other record of an event x
which is objectively available and accessible, then it is in
principle always possible for system A1  to acquire this

knowledge: QI(Q 2 x) = Q2 x. The only requirement for this to

happen is that A1 understands x, i.e., that S1 also applies.
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Now return to the task of identifying P. From the

identification of objective components in TA A = TA and A TA

A, one finds: P Q = P and Q P = Q. But, application of the rule

of accessibility requires also P Q = Q and Q P = P. Hence, it is

deduced: P = Q. P is identified with "objective truth in A".

Using this result the following decomposition is obtained:

TA = L + Q, and NA = L - 0

Now, since TAX = NA A NAX : "I cannot show x is false", this

phrase can be interpreted in two different ways: either as Lx:

"I don't understand x", or as Ax: "I can show x is true". The

first case is clearly identified by L in TA = L + Q. The second

possibility is reflected by Q, since A = S + Q. Now Qx, the

procedure by which x is proven to be truie, implies a cognitive

system A1 for which Alx = Slx + Q x is valid. In the context of

system A which is indicated by "IN in the above statement,

clearly the identification A1 = A and, hence, for this case if Qx

is valid, Ax is valid as follows.

In order to incorporate all these properties with the TA L
+ Q operator above, one has to interpret +, which is logically
"and" as + , which is introduced as a logical symbol for "or"!

fHenceforth"

* *The approach taken here is that of an either or alternative. In
future work the ambiguity in TAX can be extended to intermediate
"levels of conformation" (see references 6 and 7).

"**The circled plus notation is not essential for the algebraic]• development and may be omitted for future work.
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TA = L ® Q

NA = L ® Q

where Q is to be t;-anslated as "or not", which are the correct

interpretations of TA and NA.

An algebra between "and" and "or" operators suggests itself;

from TAA = TA and ATA = A, we derive:

D 0 + and + =+

Instead of "plus", in + or + we could substitute "minus", -,

such that 0 + = 3 ; - 0 = +, etc., following conventional

rules.
For the "plus" system, the multiplication diagram is as

shown in Table 5:

TABLE 5. MULTIPLICATION DIAGRAM FOR THE PLUS SYSTEM

and or

+ 0

and + + +

L ~~or 000

with obvious relations, it a "minus" sign is introduced. The

relationships above bring out the complete internal structure of

a cognitive system.
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* Now appreciate that T A= U + Q and A T =S 4 V do not
S.[ reproduce either A or T and, hence, T cannot be used as an

• " internal or external operator describing "truth Of x*. In t.-I-t,

the operation T Ax = Ux + Qx removes from Ax its subjective

support S and substitutes the neutral, existential operation U;

Ux; '"x exists".

For the case when x is an event, it will be shown later on

that T A has a basic interpretation as a body B. The body

function is that of a receptor and a recorder. Hence, a basic

definition is adopted:

Boey =B =T A =U + Q

- "yAs has been seeni, in each system A, Qx implies Ax and hence,

if Bx = T Ax is valid, then Qx must be valid and Ax follows from
this, hence, B + A. This rule, ttanslated in ordinary
vocabulary, states that the recording of an event x points to an
observation of event x, which actually or supposedly took place
and that the observer A produced the recording of the event.
Stated simply, every event has its record, and every record

implies an event which took place.

Now returning to A Tx = Sx + Vx, the internal support

function S is preserved, while for the proof Qx, is substituted

the label Vx: "x is true". Later on the terminology "mind", M,

* ~. shall be used for A T. Hence,

Mind = M A T = S + V

"Combining the two above statements, a most fundamental
* relationship is derived:

Cognitive system = A = M B = mind operating on body
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This follows from: M B = A T T A = A T A = A.

One concludes that every cognitive system consists of a part

which is called mind and a part which is called body. The mind M

contains the support S, which obtains subjective significance to

statements x. The body B acts as a receiver and recorder of the

procedure Qx which leads to the proof of statement Ax. The mind

".M also directs the operation 0 of the body B to receive or

"record.

This interpretation brings one close to a full understanding

of the internal structure of cognitive systems. The next

sections will further elaborate the introduced terminology.

First one has to understand how different cognitive systems

communicate with each other. This is discussed in the next

subsection.

Communication Between Cognitive Systems

Two cognitive systems A1 and A2 may communicate. Each

system is restricted to making statements of the kind Ax, ANX,
-AX, or TAX for an expression of knowledge, which are typical for

the quiz situation. Suppose, as before, x is a statement, and

speaker A2 expresses his opinion:

A2x: "I (A2) can show x is true"

Now speaker A1 , upon hearing this, may comment:

AI(A 2x): "I (A1 ) can show: 'I •. 2 ) can show x is true', is true".

In an earlier subsection, what this statement may signify

"-- was discussed. Suppose speaker A1 has prior knowledge of x, such

that A1x applies, then the above statement A1 (A2 x) is valid,

even if Ai hab no knowledge of the method Q2x by which A2 intends

. to prove A2 x (remember A2 x = S2 x + Q2 x, where S2 is the support
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and Q2 is the proof function). Also, since Alx Six + Q1 x, x

must belong to the set p(A 1 ) I (A2 ), i.e., the intersection

of sets w(A1) for which Alx applies, and similarly, V(A2 ).

Hence, x belongs to the set of common knowledge. In this case,

no exchange of information has taken place.

The other case is when speaker A1 wishes to learn by which

method Q2 x, A2 intends to prove A2x. Now, A2 has to make backup

statements A2 A2 --- A2 x which reveal his method and make his

knowledge accessible. Now, A1 , upon receiving this information

and finding no fault with it, proclaims A1 (A 2x). For this case,

information is passed cn from system A2 to system Al.

Some analysis may be helpful here. The algebraic facts of

orthogonality between subjective operators S and objective

operators Q is needed here.

SIQI 1  Q1 SI = S 2 Q2 = Q2 S 2 = •, and SIQ2 = Q2 S 1 = S 2 Q1 = Q!S 2 = .0.

Furthermore, the basic rule of inaccessibility between

subjective operators:
S1 S2 = S 1 , S 2 S 1 = S 2

and the basic rule of accessibility for objective operators:

Q1 Q2 = Q2' Q2 Q1 Q1

apply. Application of these rules gives at once:

A A =(S + Q ( + Q = S + Q

1 2 ( 1  1 2 2 ~1 ~2
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and similarly, for A2 A,. Notice a curious fact that S2 and Q,

have ceased to play a role in the exchange of information.

A little bit of reflection will convince us of the validity

of this fact. If A1 listens to A2 , A1 cannot possibly know the

subjective feelings or support S2 , that A2 will contribute to his

knowledge of x. In other words, the subjective support S2 is

inaccessible to A,; it remains within the private domain of A2 .

On the other hand, if A2 reveals the procedure Q2 by which

he proves x, that becomes part of the communication process.

This explains the basic accessibility of objective processes.

In order to have full access to the procedure Q2 x, A1 has to

be able to understand not only statement x but also the method of

proof. This is what Six implies; the subjective self S1 has to

be able to interpret the proof Q2 x.

Now; consider the case of a chain of communications:

A1 A2 -- An. From the rules above, one finds: A1 A2 --- An = A1

An = S1 + Qn" This shows the curious fact that all operators

except the first subjective support S 1 and the last proof

operator Qn have disappeared.* Only if S1 can comprehend Qnx,

can the chain of communication said to be successful or to have

been validated,

Notice that A1 A2 = A1 TA2 which emphasizes the fact that,

to the world outside, the system A2 is presented by TA2:. "the

truth in A2 " Similarly, A1 A2N = A1 NA2, which shows that

"negation in A2" is represented by NA2.

Write Ti for TAi and Ni for NAi. Then also Ai N2 A2 =

A1 N1 A2 = S1 - Q2 ' which shows that, in this formula, N1 and N2

*This relationship opens up interesting possibility in
psychology; i.e., to give an account of Jungian archtypes.
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"are interchangeable. Also TT = N N = L + Q The
1 2 1 2 1 2' Th

interpretation of these and similar expressions can become very

complicated, since the sets 11(L!) (for" which Llx applies) and
"-.(Q2 ) (for which Q2 x is valid) are no longer necessarily

"separated. Fortunately, the need for such interpretations is

"minimal.

"Next, derive a fundamental relationship which illuminates
the process of communication between two cognitive systems. As
before, define M, = S1 + V as the "mind" in system A1 = M1 B1 and
B2 = U + Q2 as the "body" in system A2 = M2 B2 ; then:

A 1 A2 = M1 B2

"This is, perhaps, the most important result thus far obtained.
Applied to a statement x, it signifies that communication is
achieved if the mind of system A, interprets the statement B2 x,
which contains the proof that A2 x is valid.

Recall that, within the cognitivc systemm Al, the mind Mi
also directs and controls the operation of QL, such that Q1 x, the
proof that Alx applies, becomes available. With communication,
information is passed on from A2 to system A1 by the mind M
simply reading the proof B2x. In this case, there is no
directive procedure on the part of the mind M, on operator Q2.

"Someone might argue that, in order to understand the proof

Q2 x, the mind M, = S1 + V may have to exercise a considerable
amount of effort. This point is granted and reflects the fact
that reading Q2 x may be difficult; however, what was said is that
M1 cannot control or change Q2 x, since this is supplied by A2 x:

"I can show x is true".

* Possible applications of the basic formula to hypnosis and

quantum mechanics will be discussed in later developments. Also,

insight into brain functioning is obtained by using these
models. This, in turn, can be used for artificial intelligence

modeling.
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Growth of Knowledge

More educators will agree that having knowledge is a faculty

a student may possess, which could be improved upon. The fact

that knowledge can grow or increase points to the need for

courses, teachers, and tests to measure the accumulated

knowledge. One may expect that greater knowledge provides a

"better faculty for understanding and for proving contentions.

With this in mind, now embark upon a search for growth

factors for knowledge. Compare the two subjective operators S

and L, where S provides "understanding" to a cognitive system A

and L refers to a "lack of understanding". In between was found

the "absolute", general, operator U for "universal being". A

natural vantage point is to start with a method that has proven

fruitful before:

Let S =U + s

L=U - s

These equations carry much significance. First, consider U and s

as new variables which replace the (S, L) pair. Such a

transformation is possible, if the properties governing S, L, and

U operators remain intact. Secondly, consider the significance

of s. The equations strongly suggest that the subjective

operator S is obtained from the "neutral" U operator through the

addition of a growth component s I

Similarly, the "lack of understanding"% L could be

interpreted as having a deficiency of growth component s.

Now inquire about the properties s must have. Since S U = S

and U S U define the properties of inaccessibility of

subjective operations, this leads to (U + s) U = U U + s U = U +

s, from which, s = s U, U (U + s) = U U + U s = U and

U s = 0 follow. By using these properties and substitution
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into S S = S, one finds, similarly: s2 0 This last result
also follows fromi the previous two~s 2 = (s U) 2 = s (U s) U = 0.

Thus, one concludes that s has properties which are quite

different from the usual properties which characterize a

cognitive system.

A similar argument may be applied to the objective

operations. Thus far, only two have been encountered: Q and

V. In order to preserve the symmetry between objective and
subjective operations, a third operator D is introduced which is

defined as follows.

Let Q = V + q
and D = V - q

Hence, as was done Lefore, the new (V, q) pair replaces the (D,

Q) pair by the transformation equations. The operation Q stood

for "proof of truth", whereas, V stood for "objective truth", and

thus, q can be interpreted as a growth component, which when
added to V produces Q. The significance of D (for dumb) now is

evident; this operation indicates "jack of proof", or lack of a

procedure to produce proof.

Taking this clue, one could define a new cognitive

operation: G = S + D (G for "glaube" = "belief" in German), such

that Gx: "I do believe that x is true", with the other

designation: GNX: "I do believe that x is false". Hence, Gx: "I
believe x" is to be interpreted as Sx: "I understand x" and

Dx: "I have no proof for my belief that x is true". The

"believe" concept opens up a whole new class of cognitive

systems, where Qx; "I can prove x" is replaced by Dx: "I cannot
prove x". Logically, the systems A and G are quite similar in
structure, each having the internal truth and negation

opevations, etc. Tie practical significance of the G class does

nut seem to be as great as with the affirmation class, A, and
thus, this case will be left at this junction, to return to the

discussion of the former case.
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The process of finding rules for the objective growth

component q will be continued. Since Q V = V and V Q = Q for

objective operations (rules of accessibility), (V + q) V = V V +

q V = V, from which q V = 0, also V (V + q) = V V + V q = V + q,

and, hence, V q = q. Application of these rules and substitution

into Q2 = Q gives an added result: q 2 = 0. However, this

result is not independent of the previous two, since q 2 =

V (q V) q = 0. As was the case for the subjective component s, q

does not behave as a cognitive operation.

Henceforth, s and q will be called tensions. Notice there

are two grc•ns of tensions, the subjective s and the 3bjective q,

"each with their own characteristic structure. The tensions are

tle structures which have to be added to the "universal" (U, V)

framework in order to produce a cognitive system. This can be

seen as follows.

Suppose, in a family of cognitive systems Ai, the universal

"truth": T = U + V system applies. Thien for A1 : A1 = Sl + ,=

(U + s9) + (V + ql) = T + (sI + ql). Similarly, we would find

for A2 : A2  T + (s2 + q 2 ). What A1 and A2 have in common is the

universal T operation, and since this applies to all Ai of the

family, the individual structures which make each cognitive

system distinct are the tensions si and qi"

It is a small step from here to consider the (U, V)

structure indeed as an already present &nd existing, truly

universal structure! If that were the case, then all that one

has to do to build a cognitive system A is to add to this
universal structure the tensions s and q.

There is strong evidence that such a universal (U, V)

structure indeed exists. Later on, links of cognitive systems

with quantum mechanics will support this viewpoint. There are

other arguments: If there were no univer-sal structure already

present, each individual cognitive system would have to rebuild

the (U, V) components on its own. The physical requirements for

doing so pose many obstacles, which almost seem to rule out this

possibility.
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Thus, one is forced to consider the existence of a physical
universe in which universal (U, V) components are already
present. Later on, what these components are and how they relate
to other physical entities will be discussed in detail. Each
individual cognitive system is built upon the universal (U, V)
structure, and this is what makes communication between cognitive
systems possible!

The discussion of growth within a cognitive system will now
be completed. We envision a cognitive system A = (U + s) + (V +
q), which was built upon a universally existing (U, V), structure
by the addition of tensions s and q. The system may be
considered "growing" as time passes on, such that, at time t:

A (t) = (U + s (t)) + (V + q (t)).

What are the properties of tension: s(t) and q(t)? it is
possible to expand s(t) and q(t) in a Taylor series: s(t) = s(tO)(2)(t - t_)
+ s(1)(to) (t - t) + s" (t ) 2 t) +--- where s(%) (t 0 )

refers to differentiation of s with time, at time to. For short,

s(t) and q(t) will be written:

s(t) = so + s At + s (2) At and
+ (1) A(2) At 2

N q(t) q 0 qo A t + q0  2 +

Now, s(t) as well as so have to satisfy the two basic
properties s U = s and U s = 0: and for q(t) and qo: q V = 0

and V q = q will hold. Substitution of the series into these

requirements gives:

(n) U = (n) U so(n)= 0

for the subjective tensions and
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( 0 (n) V 0, V qo(n) qo(n)

for the objective tensions where n = 0, 1, 2, 3,

Notice that each coefficient in the Taylor-series expansion

satisfies the tension rules separately; hence, all time-

derivatives of tensions are themselves tensions.

Notice in passing that, if sl and s2 are any subjective

"tensions, s s2 (sI U) s 2 = sI (U s = 0 and, similarly for

the objective tensions, s1 s2 = 0; ql q 2 = 0. Also, the reader

"is invited to prove the cross-product rules s q = q s = 0 for

_any_ s and q type tensions.

These results may be summarized as follows: knowledge

p- exists in the form of a cognitive structure, which is 3btained

through the addition of subjective (s) and objective (q) tensions

to a basic, subjective (U) and objective (V) superstructure. The

resulting subjective (S) and objective (Q) structures are

mutually independent. Growth of knowledge is accomplished simply

by the independent addition (or subtraction) of s- and q-

tensions. Each addition or subtraction represents a complete,

new state of knowledge. All tensions are independent from each

other and from all cognitive operators in opposite structures.

Additional rules within each structure are: s U = s, U s = 0, and

"q V = 0, V q = q. Hence, it is the ability to form tensions

which is at the core of the cognitive system.
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SECTION III

REPRESENTATION OF COGNITIVE OPERATIONS

Matrix Representation of Cognitive Systems

- I nIn this section, most of the analytical results of previous

sections will be summarized. Thus far, a cognitive system A has
been considered as an operation which allows the system to

receive input sentences x and produce output statements of the

form y = Ax.

In order to represent a system with "knowledge", the
transformation A has to satisfy the basic rule: A A = A. Later,

A was split into a subjective component S and an independent
objective component Q, such that A = S + Q. The last

developments showed that S and Q themselves could be split into a
- general superstructure (U, V) and tensions s and q, such that S =

U + s, and Q = V + q. For the algebra, it was assumed that
conventional associative and distributive laws hold foc

multiplication and addition of operators. The last assumption is

the weakest part of the theory, since some properties of the
2

tensions, s = 0, s U = s, but U s=0, seem far from conventional,
and the validity of the use of associative rules, as in

s= (s U) s = s (U s) = 0, may be questioned. In order to

bolster confidence and assure scrutiny, a favorite trick in
operator theory is to use matrix representations.

The operator is represented by a matrix which exhibits all
the rules and properties the operator must have. The advantage
of this procedure is that, since matrices consist of blocks of
numbers, every step can be verified through simple calculation
with numbers. As shall be seen, other advantages result from the
matrix representation. The whole mathematical structure is
opened up as it were, and some results not foreseen or not

apparent from the operator theory are laid bare.
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First, some simple rules for matrices are reviewed. A

matrix A consists of a block of numbers, aij, where i 1,

2, --- , n indicate the rows and j 1, 2, n labels the

columns:

all a 1 2 - a 1

a21 a22 a(1)A=

a nI a n2 a- ann

Matrix-multiplication: C = A x B is effected by the rule:

cij = ail blj a 2 b 2 + --- a bnj (2)

Notice that this rule essentially is the basic rule for scalar

multiplication of vectors. Let a - (a 1 , a 2 , --- an), and

v = (bI, b 2 , bn); then the inner, or scalar, product between
vectors aý and F is:

a b a1 b 1 + a 2 b 2 + --- + a bn b a (3)

If a and b are orthogonal, a i b, then a • b = 0. Hence, every

element of matrix C above is the scalar product of a row vector

of matrix A and a column vector of matrix B.

The rule for addition of matrices C = A + B is simply

effected by:
c.. = a.. + b..

I- 1D 13

The great advantage of calculations with matrices is that they

satisfy associative rules, A (B C) = (A B) C for multiplication

and conventional distributive laws for numbers apply:
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A (B + C) = A B + A C (5)

Rules exist ýor finding an inverse A- (but an inverse does riot

always exist) such that A A-1 = A- 1 A = I where I is the unit

matrix

1 - -
-.- 1

I0 (6)

which has numbers 'one' only in the main diagonal.

One conventional rule not applicable is the commutative

rule, which applies to numbers a b = b a, but not for matrices.

In general: A B t B A.

Now consider a special type of matrix:

aib alb alb

DaaX 2b1 a1b2 in (7) ~(71

a nb 1 a Ib 2 --- a nb n

nn

Notice that all elements of matrix D consist of products of two
numbers which are taken from the components of vectors

a and b. This special arrangement of numbers is called a
dyadic, or outer product of two vectors. Since outer products

are matrices, they follow all the above rules for matrices. In

addition, it is easy to check the following simplified
multiplication rule:

(a X b) (c X d) = (b • c) (a X d) (8)
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This rule shows that, with outer product multiplication, the two
"inner" vectors are used for the scalar product which is a single

number, while the two outer vectors are preserved to form the

- vectors for the new outer product. These properties indicate

that outer products are particularly useful to represent the
idempotent operators which appear in cognitive systems.

Let us consider A A = A, the fundamental rule for a

cognitive system A. Let A = a X b. Then

U A A = (a X 5) (a - F) = (a - B) (a- X ) (9)

Hence, A A= A applies only if (a 1. This is the only

constraint on the operator representation A = a X b.

Recall that, for subjective operators, S1 S 2 = and, for
objective operators, Qi Q2 = Q2- First, let S= -C X d and

S 2 =c X2 Then

SiS2= 1 X 3i) 1 2 X d2= (02" cI) (C1 X J2). (10)

Hence, S1 S2 = S1 only if (c *i) = 1 and a, = 2" A little

reflection will indicate that since S2 could be replaced by

any Si for which Sl Si = SI, the condition

d = d2 = d3 d. would exist for any i. It follows that di

must be a universal vector. Let us call d. = U. Now, the

- scalar condition becomes (c2 u) 1, and since this must apply

L_ to ail ci, we have (ci" u) U ) .

In order to facilitate the understanding of the scalar

product condition, it is useful to consider vectors ci as having

one component in the direction ol u and one orthogonal to u.

Leot c. = a. U 4 si, where s I 'I. Then the condition is1 1 _ 1

simplified to; (u - u) = 1. Hence, a. must be constant. Take1 1

a. = 1, such that (u • )h 1 and U becomes a normalized
1

uixiversal vector: u.
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Combining all these results, a complete description is found

for si:

S. = (u + s.) X u = (u X u) + (si X U) (1l)

Now return to the operator calculus to obtain the basic

decomposition of Si into a universal structure U and a tension

si: Si = U + si. A comparison with the outer product equation

above gives two identities:

U=uXu (12)

for the universal operator with (u - u) = 1 and

s s X u (13)

for the subjective tensions, where s 1. u.

An analysis completely analogous to the above, which will be

left to the reader, will yield, for the objective operators:

Q. v X (v + q%) = (v X v) + (v X qi) (14)

Here v is a normalized, universal vector, and the q are

vectors orthogonal to v: qi - v = 0.
Earlier, the operators Qi = V + qi were discussed, where V

was the universal objective operation for 'truth' and qi were

objective tensions. Now V and qi are identified from the above

representation: V

V =V X V (15)

for the universal objective operators, with

(v ov) =1 and
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q = v X q (16)

for the objective tension, with q I v.

NOW it can easily be verifed that, indeed, q V = 0 and

V q = q are satisfied:

q V (v X q) (v X v) = (q • v) (v X v) = 0, (17)

since q and v are orthogonal (q • v = 0). Similarly,

V q = (v X v)(v X q) = (v • v)(v X q) = v X q q. (18)

The reader is invited to verify that V2 = V and qi qj = 0o The

same procedures would show s U = s, U s =0, and U2 = U for the

subjective components.

Notice that the rules for the possibility of inter-

communication, S1 Si S 1 and Qi Q1 =QI between cognitive

systems necessarily precondition the existence of a universal

superstructure (U, V).

Since objective and subjective systems are indepe lent, it

is natural to expect u i v. This follows easily from U V = 0.

Also, from this, U q = 0 and from q U = 0, follows: q I u as J.s

to be expected. Similarly, s i v would follow from V s 0, and

s i q would follow from Q S = 0.

A remarkable property is discovered: si, qi, u, and v are

mutually orthogonal 'vector spaces'. Whereas, u and v are

constant universal unit vectors which determine that

superstructure, si and qi, must be interpreted as mutually

orthogonal subjective and objective vector-spaces, which is also

indicated by S and Q. Each individual subjective and objective
"state" which makes up a cognitive state Ai is now represented by

particular vectors si and qi in these spaces. Further

discussion of the significance of these vectors is given later.
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The above interptetation covers all properties of the

a cognitive operators and tensions discussed in previous

sections. These properties are summarized in Table 6. Notice

that the neutral operation n = v X u is not included in the

table. This operator stands for "necessity" and plays a role in

modal logic (see Zeman [3] and Prior [4]). One defines operators

LZ = T + n (for necessity truth) and MZ = T - n (for possible

truth). It is easy to show that n is a neutral tension (n U = n,
U n n V = , V n = n, and n 2 = #). Furthermore, n T = n,

T n = n, n N -n. From this it is easy to show MZ N Lz N.

Structure of Knowledge and State-ments

The previous subsection demonstrated that the outer product

r0 representation of a cognitive system A revealed a very simple

basic structure consisting of four mutually orthogonal vector

spaces. We now carry the discussion a step further to include
the statement x to which the cognitive function applies itself.
What could be the representation of x?

Recall that A = a x a2 is an outer product representation

for which A A = A, such that (a . a2 ) = 1 must be satisfied.
Now a representation for y = A x must be found, where both x and

y are statements. A natural and simple solution which fits into

the framework of outer product representation is to represent x
as a vector: x. Then, y - A x (a1 X a 2) x (a... x) a1 , and

indeed, vector x is transformed into vector y ( 2  x a

This was the bonus result of the outer product
representation: It leads to the unexpected result that a

statement can be represented mathematically simply by a
vector! The full significance of this result will now be
investigated. Since A = S + Q (U + s) + (V + q), the outer

product representation of Ax is:

This result should be useful in linguistics research.
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A x {(u + s) X u + v X(v + q)} x (19)

(z u) (u ' s) + (x • (v + q)) v (20)

The result shows that, if y = A x, the vector representation
y of y has components in three mutually orthogonal

directions: u, v, and s (but not q). A host of other properties

can be read from the basic result above.

First consider U x = (u X u) x (x - u) u. This is

recognized as the component of y in the u direction. Before, U x
was inteý.preted as "x exists" :. We have the rather surprising
result that "x exists" is measured by (x • u), which is the
component of x in the u directionI Let o = (x • u), then a re-
presents a signal that x exists; a is called signal of x. The
signal supplies the information that "x is there", or that x

exists.

The equation for y shows that a also is the component

of c in the s direction. Now, ince S x was id 'Pitiic- w . I
understand x", S x {(u + s) X u) x = o (u + s), gives the
components of y in the u and 5 directions. Hence, s makes up
the component of subjective self, or "I" in "I understand x",
and a s indicates that "I can read the signal of x". This
comprises the purely subjective aspect of "knowing x".

The purely objective part is given by the component of y in
the v direction. Apparently, statement x has aspects or
components which relate to the v and q directions! The

v direction is "universal", whereas, q is determined by the

system A. The simplest to explain is the part (x • q), since

this clearly indicates a choice on the part of system A to accept
and interpret parts of statement x. This is seen as follows.
Suppose statement x, which has a component a in the u-direction
and a component 6 in the v-direction, also has other aspects,
features, or parameters which are represented by a set of numbers
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pi. Then x (o, 6, p), where p = (P' P2 1 --- ' Pn) now represent
the features of x as a vector of p in a parameter space P.

Therefore, since is orthogonal to the u and v directions

(x q) (p q) = P1 q+ P2 q 2 + .. P qn (21)

This equation may be interpreted as the sensors of system A

havingj assigned weights ai to the features of x. The weights

relate to the significance A has attached to the different

features of x.

The scalar product describes the account system A has given

of statement x. Now, since Qx: "I can prove x", and V x

(v X v) x 6 v: 11x carries the label true", are identified, Qx

= v X (v + q) x = (6 + q) v and the identity holds: "I can

* prove x = "x carries the label true" and "I can give an account

of x". This explains the three aspects or types of components

It is through the operation of q that system A has control

-over the choice of features of x to show the validity of Q x: "I

can prove x". The qi may also be interpreted as coordinates of a
vector q in configuration space Q. This interpretation gives A a

choice of location q in configuration space Q, and

(p • q) assigns to this location the interaction with features

Pi of x. The cGordinate vector q also may be viewed as a
process, or pro1grm_, consisting of qi steps, and (p • q) is the

net result of subjecting input x to the program, or the output,

which confirms the statement Q x: "I can prove x".

Each particular application will. determine whether qi is
considered as a set of sensors with weights, as coordinates, as

steps in a program, or perhaps some other interpretation is

needed.
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This completes the account of the formulas. There still

remain unanswered questions. What is the signal o of a

statement? According to the theory, the 'signal' is a universal

property of any event or statement. But also, we have seen

explicitly that this component of x is given in a direction

orthogonal to the objective featuras pi. Hence, it must be an

elusive property, perhaps not objectively attainable, but

accessible only to the subjectivity of a subject. The question

is left open at this juncture, until a more general understanding

of the processes of knowledge which relates to x as an event or

as a reference to an event is obtained.

Another question is concerned with the features Pi of a
statement. What are the features of a statement x? If the

statement is a theorem or proposition which requires a procedure

for proof, the qi determine the steps of the procedure and thus
-- ' pi are those aspects of statement x which are u:sed to complete

the proof. For a mathematical theorem, consider qi the lemmas

applied to parts pi of the theorem whi.ch are used to produce

* proof. The significance of 6 is simply that of designation,
label, or title. If x is: "the Pythagorean theorem", then 6 is

the title: "Pythagorean theorem" by which x: "the Pythagorean

theorem" is recognized.

The basic equation for a spoken assertion y = A x indicates

that "pure sentences" x and spoken assertions y must be
* - distinguished from one another. A pure, or general, sentence x

has, aside from the two components: a in the u direction,

and 6 in the v direction, several, and perhaps a large number of

features pi, whereas, y has components only in u, v , and
s directions. Also, since s is inaccessible to any outside

interpreter, only the u and v components of j are effective in
communication.

"This is exactly what B x = (U + Q x expresses. For t<is

reason, the expression

is7
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xB = a u + (6 + p q (22)

is called the record of x. The record is simply the spoken

a,;sertion of x as it is interpreted by some spokesman. This is

underscored by the formula: AI A2 x = M1 B 2 x, where AI's "mind"

interprets or reads the record B 2 x of A2 's assertion.

The distinction between "pure" sentences or events and

"records" of sentences or events is of fundamental significance

in our development of the theory and its applications. The

distinction is that a pure sentence or actual event can be acted

"upon by the cognitive system A, whereas a record of an event can
only be read, replayed, watched, etc., and, hence, is passive.
In the former case, A acts with q on features p of x to record

(p • q). In the latter case, (p 2 " q 2 ) has been recorded by A2

and A1 can read the record but cannot alter its content.

General. Theory of Cognitive Systems

The structure of a finite cognitive system of the
affirmation type A has been analyzed, and when it is applied to
statement x, a valid and meaningful assertion statements x, such
that Ax: "I can show x is true". A large class of processes
where knowledge is involved can be covered by this structure,
since x could cover questions regarding statements in almost any
human field or enterprise.

In fact, this is the basis for the commonly used multiple
choice questionnaire, by which knowledge is tested, and on which
the formal development of cognitive systems is based. However,
the resulting mathematical structure is suspected of covering

even a wider field of application.

Perception is one such case, and numerous other activities
come to mind: teaching (teacher-student interaction), medicine

(bra n research), health care, sports, etc., (mind-body

interaction), psychology (awareness of self: subjective-objective
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interaction), sociology, government and law (expression of value

structures in society), science (theory of space-time, quantum

theory, observer-event interaction), engineering (pattern

recognition, communications, man-machine interaction, artificial

intelligence, computer technology, etc.) and even such esoteric

fields as development of the mind processes. No doubt the list

could be extended almost indefinitely since it could include

every biological process or activity where application of

knowledge is an essential ingredient. In order to cover the

widest choice of applications, x will be called an event. The

cognitive system C is said to apply itself to the event.

As usual, the basic rule C C = C must be satisfied, and C

must have a subjective "support" S and an objective part Q such

that C = S + Q. The function of the support of "self" S is to

bring significance, meaning, and understanding to the system; the

"quest", or intelligence Q, interacts with the event. The two

component parts satisfy basic rules for inaccessibility: S1 S-)

S1 for subjective components and accessibility: Q1 Q2 = Q2 for

objective components. These basic rules, which make

"communication between cognitive system C1 and C2 possible, also

reveal the existence of two independent universal structures U

and V. The U-structure establishes actual existence or being,

whereas, V-structure acts as a store for objective truth or

recorded facts.

Another interpretation for system C: the part

M =S + V (23)

was called "mind" and
B =U + Q (23)

was called "body", thus

C =M B (24)
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expresses the cognitive system as a "mind" operating on or

controlling a "body". A striking rule for intercommunication:

C C M B follows, which states, that if system C1 "listens"1 2 1 2
to C2 , the effect is that of its mind "reading" C2 's body-sensor

operations. Applications to communications, teaching, persuasion

techniques, hypnosis, etc., readily suggest themselves.

Applications of this rule to quantum mechanics, sociology,

management, government and law, as well as TV watching, reading,

or hearing are also found.

The mathematical representation theory for system C is

completely the same as was developed for system A. One

difference to be noticed is that the strict concern for "truth"

and "negation" schemes which dictated the development of system A

will be less noticeable for the general cognitive system C. The

reason for this difference is that, whereas A is closer to logic,

the system C is closer to everyday experience, and notions of

"truth" are usually taken for9LCanteudC aLh~t Lae -uai expressed

explicitly.

To illustrate this point, if x is a TV program and Cx: "I am

watching x is true", then CN x: "I am watching x is false", TC x:

"I am not watching x is false", and Nc s: "I am not watching x is

true", hardly are everyday concerns or expressions of common

experience, except for the first one: C x where usually "is true"

is omitted.

The logical structure of truth and negation which determines

the structure of C is implicitly understood but not explicitly

expressed in most common experiences. For this reason, attention

will be devoted to the discussion of C x, which is an expression

for the experience of event x.

The mathematical representation of C was given in outer

product notation as

C (u + s) X u + v X(v + q) (25)
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whereas, event x was given by a vector representation

X= (a, 6, p) (26)

where

a (x • u)
and

6 x *V).

The result of applying C to x was found as:

C x = o (u + s) + (6 + p - q) v (27)

Recall that the system C is qiven by the mutually orthogonal
vector spaces u, v, s, and q.. The u and v spaces are universal

and fixed, u derives "existence", v is called the store where
records (p • q) and label 6 of the event are kept. The s space

is variable and is part of the subjective space S.

In o Ier W wi1-6-, LoL eVeLY evefL1t X, a Uho I flt oL
appropriate s may determine its significance for the system C.
The q space likewise is a variable part of objective coordinate
space Q, i.e., each event requires a special selection of q by
system C to record the event. Similarly, the variable p vector

is part of the parameter space P which characterizes the

occurrences of the event.

The only parameter not mentioned is the "signal" a which

announces the existence of the event. The equation indicates
that the signal is accepted by s, i.e., the subjective space S
will accept x as a meaningful event it an appropriate

significance can be attached to a by a suitable choice of
vector S. This experience is commonly expressed by the phrase:

"trying to make sense" out of an event.
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The cognitive process is envisioned to take place as

follows: The event is first experienced by the body and the

mind, which both receive a signal u announcing that "something is

"occurring". The mind, through its supporting function s, evalu-

ates and interprets the signal and also directs the body with
sensors q to receive and record the event. If these actions of

body and mind are successfully executed, the event is understood

and its parameters and features Pi have become known. This

information is recorded and kept in the store v where it remains

accessible to any other "mind" wishing to recall the event. The

store may consist of ordinary storage of recorded information,

i.e., books, documents, newspapers, notes, records, tapes, files,

memory, etc., or it may be the event itself which contains its

own record in the store v. These points will be discussed in

more detail in future developments.

Matched Events and Stokes Vector Representation

In the previous discussion, a general cognitive system C was

said to contain two operations called "body" B and "mind" M, such

that C = M B. The body operates on a given event

= (o, 6, p) (28)

such that

B x ou + (6 + p q) v (29)

describes the process. a is called "signal" for the event,
and (a + p - q) is called the "record" which is stored in

the v channel (u and v are normalized orthogonal vectors). The
record contains the designation symbol 6 which names the event

and the steps (pIql, P2q 2 ' Pn q n) which led to the completion

of the event taken place.
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Consider a book as an example for recorded information. The

method tor recording, which is symbolized by the q-vector, is

contained by the physical aspects of the book, with its pages,

sentences, organization, chapters, etc. The symbolic contents

are the features pi which are contained by the book. The nature

of the "signal" is not yet precisely clear, except that it

designates "existence" for the book. In other words, Y has to do

with the fact that the book is an item of reality for me, the

observer. It guarantees that the book is a real event.

Notice that Bx in Equation (29) has two components in

u and v directions, whereas the transformed vector y = C x has

other components. In order to conserve symbols, from now on A

will be -iritten instead of C for the general cognitive system.

For the general transformation y = A x,

y 1Ax u +6 + pq) V + a s (30)

or, for short

y = (a, 6 + p-q, s S) (31)

The last notation clearly brings out the transformation

properties of system A. Upon comparing Equations (31) and (28),
observe that the signal is preserved intact. To the second term

of x is added p.q, and the third part, which indicates

features p of x, is replaced by a s. The transformed state y

will be called the interpretation of event x given in system A.
An ideal interpretation may be considered such that y = x. For

such an ideal case, p-q = 0 and p = o s. Obviously, such ideal

conditions cannot be realized exactly, but it can be an objective

to be attained for any state of knowledge. Such an objective

produces greater understanding into the processes of knowledge

and hlow optional conditions can be obtained within a finite

system.
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In fact, when ideally p-q 0 'and p = 0 s, the system is

said to be matched to the event. The terms

p.q and (p - a s) are then the error terms; they obtain a

measure .ýor the mismatch of the system to the event. The second

requirement p = a s gives valuable information, even for the non-

matched condition: "the subjective space S, of v--hich s is a
member, is a subs~ace oý the feature space, P, of which j5 is a

inember". In order to indicate this fact, henceforth, pA will L-.

written s, and in order to conserve symmetry in notation, we

write qA for q.

Basic insights into the processes of cognition have been

obtained. Given an event x, with features p, the cognitive

[urIction obtains an interpretation YA for the event, which has
the same "signal" a and interpreted features Ci PA' The curious

fact of the interpretation lies with the multiplication

factor a, which appears in o p., but which does not appear

in p. This discrepancy can easily be resolved by first

assuming P to be a unit .ector, pA and then defining a as a
AA

"length" of vector p, such that:

- • P = 2 (32)

Aisociated with Equation (32,, a unit vector p can now be defined

such that:

op=p (33)

These refinements in notation wiil have importaiit consequences.
First, the eve-nt described by Equation (28) will be rewritten as:

x = o ( + P) + 6 v (34)

and for the interpreted e'ent if Equation (30).
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A x = 0 (u + (p.qA) v + p) + 6 V. (35)

The objective of the cognitive function is now even more

apparent: it must match as closely as possible the direction of

vector PA to the direction of feature vector p. The "signal"

for event x simply becomes the 'length' of the interpreted

feature vector pA*

The task of direction finding of feature vector p is

analogous to obtaining direction i.iformation of targets in space

by radar. The task of finding target-direction in space becomes

equivalent to matching the vector pA to p, where PA now indicates

the direction of the be:am produced by the radar antenna, similar

to the familiar searchlighting operation on a dark night in the

sky. The analogy with radar direction finding of targets will be

pursued further in the following sections.

The designation 6 in Equations (34) and (35) can be any

arbitrary code by which the event is named and can be recalled.

It serves no further purpose and can be put aside for most

theoretical developments. Hence, it is convenient to write for

Equation (34):

x =p + 6 v (3b)
where .

P = o (u + p) (37)

Frequently p will be used inste3 if x to denote the

event. The vector p has important proper- *s which are basic to

the understanding c cognitive systems and Lts connection with

quantum theory (wave mechanics). if written

S (P , ()8,

where p c and p- a p, then:
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Pu 2 = P '39)

This follows easily from the definitions above and Equation

(32). The innocent looking relationship of Equation (39) carries

a lot of weight, as we shall see later.

The reason why "length" was parenthesized with Equation (32)

is that Equation (32) also will be used it vector p is complex,

which is indeed unusual, since normally one would

expect 02 = p . p* to be true, where denotes complex

conjugation. The property expressed by Equation (39) also for

complex p is peculiar to a mathematical object called a Stokes

vector. A basic result is that, if a designation is omitted,

all events are described byStokes vectors. In addition to this

result, system A also contains vectors

PA= u + PA and qA = v - qA," such that now:

A = (PA X u) + (v X qA) (40)

and

y = Ap = 0 PA 4 o (p q A) v (41)

For the matched condition, p q A can be expected to be small

and o = I, such that Ap = PA, which shows one Stokes vector p

btlnq "interpreted" by another: 1)

Since

Bp = a (u + (P v) (42)

and p qA is small, Equaticn (42) -an be rewritten approximately

as an exponential
i p p q " A (43)

-Reference 8
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where (u, v) for this occasion is replaced by the complex-plane

(I, i) coordinates.

The result of Equation (43) is highly significant: it gives

an identification of tne "super-structure" vectors u and v as

real and imrdginary components in a complex plane rereýsentation

of an exponential function, and secondly, Equation (43) suggests

a description of the body function for the more general case,

when p'q is not necessarily small, i.e., the general target

search procedure. All these concepts will be dealt with in

greater detail in later subsections.

Sum y of Status and New Developments

in the last subsection, an important juncture of ouL-

development of cognitive systems was presented. A cognitive

system A, for which A2 = A holds, describes a system in which a

match between "body" and "mind" functions is achieved which

telidiA1s intact as a condition for cognitive functioning. The

condition is that the vectors pA and q of mind and body

functions at all times are orthogonal: pA qA = 0.

Also, when confronted with an object-event described by

features p, qA-p is not generally zero, but an attempt is made to

achieve the ideal matched condition, when p "qA = 0. Thus, the

distinction between the working of the internal system and the

external search function Is made clear by these simple

relationships.

"From now j;,, the convention will be adopted that the

statement y = Ax only makes sense if p-q is small. i.e., in the
A

neighborhood of perfect match. in that case, Bp can be defined

rigorously as

B p o ei A = o (u + (P*qA) v) (44)

which is the (complex) received signal from the target-event.
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This case is then easily generalizable to describe the

complete search function when Equation (44) on the left becomes

the description of the received signal during the entire search

mode. It should be kept in mind, however, that in making this

step, the strict adherence to the cognitive structure A A = A,

etc., must be abandoned since this structure becomes applicable

only when the search for the target-event has resulted in a

satisfactory match, i.e., the target has been four'.

The cognitive function thus applies to the target tracking

mode of radar, after the search has resulted in target

acquisition. Only then does knowledge exist about th)e position

of the target. (Position is here defined by vector p at time t.)

The junction we were speaking about consists of proceeding
with the new task of analyzing the body-function

B p = e qA during the entire search procedure which leads

to target acquisition. The analogy with radar will be oursued in

greater detail in the fol owing subsections.

The previous junction also leads to a connection with

quantum mechanics. This road connects by means of the result

obtained in the la-t subsection that the observed event is given

in the form of a Stokes vector. The Stokes vector automatically

* ° defines a Hamiltonian equation (this follows2
from: Pu = - P)- The Hamiltonian equation and resulting form

for the Hamiltonian, which determines classical Newtonian and

relativistic mechanics, is then shown to lead to the well-known
theory of elementary particles.

pi
From this point of view, the process B p = a e A gives

the interaction of an object with features (momenta) p with a
If"neasuring apparatus", given by the "body": B. The result is

that B p describes the "reduction to a wave packet" of the

object, which expresses the fact th.t a set of compatible eigen-

values of the object's parameters p has been observed. In order

to make the last statement comprehensible to a reader not
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familiar with quantum theory, an introduction and exposition of

these topics will be developed. This will comprise the avenue of

the second branch of our juncture.

The fact that there is a connection between cognition theory
and quantum theory, or wave mechanics, is clear from several
"points of view. First, there is the symmetry which exists be-
tween p- and q-variables, which occurs not only in quantum theory
but already in classical mechanics and is called Hamiltonian
theory. Secondly, the form of B p strongly suggests a wave func-
tion if one of the coordinates in OA is the time-variable

(p " qA = wt - kx is the familiar exponent of a progressive wave

front).

The simple fact that the wave theory introduces time and
space, as part of the observer's q-frame, in turn, has interest-

* ing and important consequences for the theory of cogniticn. This
idea can again be turned around to reflect on problems of quantum
measurement theory. One of the basic problems still unclear
is: how does the object obtain its set of coordinates?

Somehow, one feels that the investigating subject with
measuring apparatus is at least partly responsible for implanting
a coordinate scheme on the object-event.* That this must be so
is clearly indicated by the analogy through symmetry with the
"mind" function. Just as the object's features p induce an

interpretation vector PA to the mind, equivalently the body's
coordinates qA introduce coordinate space q for the event! The

fact that p and PA, q and qA are only approximately the same
introduces many interesting consequences for measurement theory

and the resulting coordinate transformation laws.

See Reference (9), p. 291.
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SECTION IV

COGNITION AND MATCHED FILTER RECEPTION

Radar Target Detection Analogue

The preceding subsections hinted at an analogue which must

exist between perception and detection of targets with radar.

That this must be so is not altogether surprising because the

radar target detection problem may well be viewed as a special

case of perception.

The "body-sensor" in this case is the radar instrument with

its antennas for transmission and reception of electromagnetic

radiation. The target, of course, is an object in space which

the radar is designated to locate. First, it must be established

which elements in the analogy are geiaeralizable to perception and

which are peculiar to the radar system itself.

The target usually is at a significant distance from the

radar site location, such that the antenna system may be

�c�r •-eced suidli compared to the target range, R. Also, it is

necessary to distinguish between so-called passive targets which

do not, by themselves, produce radiution and active targets such

as a beacon which do. For the case of passive target reception,

the radar antenna, cons idt ed as a point source of

electromagnetic (EM) radiation, transmits a spherical wave which

has a directive beanm pattern *(p). In the far field, where the

target is located, the spherical wave can be considered as a

plane EM wave which strikes the target and produces a return that

is captured by the radar-receiver antenna. The target return

signal is recorded and processed for the purpose of target

detection and location.

For active targets (beacons), only the receiver of the radar

is operative. In most cases of passive target reception, the

target return is mixed with components of active external noise

sources, and a so-called matched filter is employed in th.-

receiver system in order to optimize the target return signal.

The received signal which is produced at the matched filter
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receiver output can be shown to be equal to the autocorrelation

function for the transmitted waveform.* The target signal is

"then said to be optimally received when the autocorrelation

function reaches a maximum. These concepts are very important

"tor generalization to perception. The autocorrelation will be

shown Co be equivalent to the "body function" Bp of perception.

The physical significance that can be attached to the

parameters involved in the comparisons must be kept in mind in

order to understand the mathematical analogies. For example, in

radar, an electromagnetic wave serves as a connecting link

between target and observer. What could be the corresponding

link operation in perception? All kinds of physical wave

phenomena which could serve this function may be imagined. But

very likely many practical obstacles will be encountered because

such physical sources may not have been observed experimentali.y.

Fortunately, the example of quantum mecnanics can lead out

of this dilemma. There the wave function does not e:.press a

Physical entity such as an acoustic, hydrodynamic, or

electromagnetic wave, but rather a conceptual wave! The

conceptual wave structure O(p) is interpreted such that the

absolute value 10(p)I 2 gives the probability (density) that the

particle, if measured, will be found at location p. In the usual

interpretation, p represents a point in the particle's momentum

space.

Momentum space p, rather than the particle's ordinary

physical space q, was chosen because of developments in

perception. In perception, a target is visualized with

parameters p = (pl, P2 ' . pn) being observed by a conjugate

set of body-sensors qA= (ql, q 2 ' " " . qn). In radar, the

corresponding desired parameters are the target's spatial

position variables: P ý (PI' P2 ' P3). Some discretion is

necessary lbecause in radar, as in cognition, only target

*This is the general case for Gaussian noise sources. See
Reterence 10, pp. 3-32.
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direction is observed in space p. Target range is produced in

radar by a separate measurement of the time it takes for the

signal to make the return trip: T = 2R/c, where c is the velocity

of light. However, no time-delay measurement is assumed to occur

with pe.ception. Hence, the "length of p" does not measure

target distance, but rather: o = "strength of p" = I~ I
"The "signal" is called o, belonging to the target,

and c relates to target existence rather than to the target's

* spatial distance. o may be interpreted as a measure of how well

the radar succeed. in locating the target's direction in space.

The way in which a radar system operates to locate a target

may be explained in several steps. Several modes of operation

are used to narrow down the target's coordinates. The first step

is to listen for a signal which would indicate that there is a

0 target. The search mode is used to establish target existence.

"-* It employs a broad beam, such that a large volume of the physical

"space is covered. Any target located within this volume will

produce a return signal which reveals its presence.

The next step consists of a scanning operation with a narrow

beam antenna which is used to narrow down the target's position

coordinates. Once the approximate target location is found, the

target tracking mode of operation is used to ensure target

acquisition within a designated target space or bin. If

necessary, a scanning operation with an even sharper antenna beam

results in narrowing down the target position into a smaller

bin. Every search operation hence results in more precise target

positioning.

Note that the above procedure is quite analogous to the

processes used in perception to locate an object, First, we

"listen" for any sign of existence for the object. An "open-
minded" attention mode of operation is used for this listening

phase. After something is heard, then the possibilities are

narrowed down by concentrating attention focus on specific

observables relating to the object. After this, the obj~ct is

identified. The identification consists simply of correlating
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the measured target features with known features of related

objects. In the radar problem above, the features measured are

the coordinates which determine target direction only,

while u relates how well the beam is pointed at the target, i.e.,

if 1 = 1 (maximum), the target's position has been found.

The demand for precise target location is dictated by the

requirements of the problem to be solved. In a hostile

encounter, an enemy target is to be intercepted, and this

objective can be met by providing an accurate target location.

The same principles apply in perception. The more essential it

is for a life situation to know the precise extent of an event

which is taking place, the more the mind will concentrate to

produce an accurate account of the event.

In the next subsection, a more detailed' analysis of th

processes will be given.

Analysis of Radar Reception Principle

In this subsection, the radar target deLection analogue will

be developed in more detail. The analogy is very important for

perception and for cognition, in ge~neral, because it presents a

prime model or example from which all other cases can be

derived. Radar operates with electromagnetic radiation as the

communication link between the target and the observer. This has

to be reinterpreted for perception, and here the quantum model is

useful because it introduces instead a conceptual wave, as was

indicated earlier. This model can also be used as a source for

interpretation in quantum mechanics.

Essentially, the goal is to describe the processes which

lead to knowledge. These processes all aim at object acquisition

and identification. Target acquisition for radar will be shown

to be similar to c ject acquisition in perception. Both attempt

to "capture" a target by processes of optimization of a received

signal. The signal is thought to emerge at the output of an

optimum filter receiver which is matched to the target return.

This signal takes the form of the autocorrelation function for

tilt' t ,lt', t rcturn.
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The method by which the raear antenna produces its

beam 4(p) is shown in Figure 2. A two-dimensional image in the

plane of the paper is shown here for convenience. The antenna

usually is a parabolic reflector, which is not shown in the

figure. The flat surface covering the face of the reflector is

cilled the antenna aperture. In the figure, this aperture is

h own as a tilted plane, indicated by spatial variables q. The

tilt angle 8 A determines the beam direction vector A The raC•r

beam pattern O(p) is formed by an illumination of the antenna

aperture with electromagnetic (EM) radiation. The EM energy

emerges from the antenna feed system which is located at the

parabolic focal area (not shown in the figure). The distribution

of EM field over the aperture plane is given by the so-called

primary illumination function *(q).

_/1 7\'o .- " •A

Mi b" d$r tY

pT,4 -ta- S(P)
"we, pperfor p a r ' bP8 he B(p)

q-plan+

Figure 2. Principle of Radar Beam Formation

In the usual mode of operation, the aperture plane is a

surface of constant phase, while the field's amplitude has a

smooth, bell-shaped distribution with the maximum field strength

at the aperture center. This centcc is shown here as a pivot

point governing the direction 0 of maximum radiation In

actual operation, the mechanical center of rotation may be

displaced somewhere on the antenna. This does not alter the
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principle of antenna operation involved, since the location of

the target is supposed to be in the far field of the beam, i.e.,

at a distance large compared to the radar antenna dimensions. A

consequence of this is that the target direction relative to the

radar is given by the unit vector p, which aims in the same

dir tion for all points on the antenna aperture.

The beam is produced by adding the contributions of

illumination of each point on the antenna aperture to the field

in a given far-field target direction. Since radiation is a wave

phenomenon, these contributions are added in amplitude and

"phase. The amplitude* is simply proportional to the illumination

pattern *(q). The phase contribution depends on the direction

of the target. In the figure, a so-called phase plane is shown

orthogonal to the target direction p. The phase plane

establishes a phase reference for each point q on the aperture

for the given target direction.
The phase lead for point q reative to target dairection p is

shown in the figure as the distance q sin o. Notice that for

the main beam direction PA all phases of points q are zero

relative to the antenna aperture plane.

The contribution in amplitude and phase to the far-field

at p of a point q on the aperture thus becomes proportional to

F(O) ý(q) eikp'q (45)

where k = 2w/x is the wave number of the phase associated with

the field and A is the wavelength of the electromagnetic

radiation. Notice the important fact that the wavelength A acts

as a natural unit of electrical length on the q aperture. Since

frequency v = c/A, where c is tihe velocity of light, a higher
S

••-[ Ainplitude is used here in-the quantum mechanical sense; it also
"includes possible phase contibutions of the primary illumination
"function.
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frequency produces a smaller unit of length x and hence an

electrically larger radar aperture.
The total field contributed in a direction o is the sum of

all contributions of points on the aperture

H *()= ipq) e wp / dj (46)
R

where R is the range of integration over the aperture. From the

figure, we find for the phase term:

p.q = q sin 8. (47)

Equation (46) shows that the antenna pattern and illumination

. function are Fourier transforms of each other. The theory would

require the integration ii Equation (46) to range over the total

coordinate space Q; this can be accommodated by defining
.(q•) = 0 to be outside tne range R.

As an illustration, take a one-dimensional case of a linear

aperture of size 2a which has a uniform illumination as indicated

in Figure 3(a). The radiation pattern is found from Equation

(46).a
i k q sine dq (48)

(p) Af e q(8
-a

The integral is found simply from:

+a
+a icx

e dx i c
-a -a

2 icae-ica Si2 ca (49)
c 2 e1  ca
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Thus:

*(E) = 2Aa sin (k a sin 0) (50)k a sin o

The function defined by Equation (50) is illustrated in Figure

3(b). The function is proportional to the illuminated aperture

size and it has a maximum at 0 = 0, as was to be expected.

~~L. 1.0~--' ....... :- 7................................................
..........................................:-•......... •--'---.-4-.. ,-I-•--

---- ....

F.._ • ..- . ... - _ . . .. _ _ _ --

L • * ._.• .J•L-. I - • I I I I I l i _ _

( 7 T • ? 3 T T 4 T T 5 , 1
x in radians

(b)

Figure 3. An Illustration of (a) a Uniform Illumination of an

Aperture and (b) the Corresponding Radiation Patterrt

Notice that in addition to the main beam, several sidelobes

with smaller maximum intensity appear. These sidelobes are a

general characteristic of antenna patterns and have to be kept

sn~a~l; otherwise, targets appearing in a side lobe direction

could cause ambiguous signals which could trigger false alarms.
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The width of the main lobe is determined by the electrical

antenna size: k a. The direction of the target is given by the

angle 0. Notice that the signal] prolu'ed bh the intoenna p.-It ! iX

increases as the target direction approaches the direction

of where 0 = 0. For the condition where 0 = 0, the

pattern is matched to the target, which means simply that the

main beam is pointing in the direction of the target. The

sharper the beam shape, the more accurate the target direction is

pinpointed by the antenna beam.

If Che direction of the target is unknown, a broad beam is

used to establish target existence. Once a signal is received, a

narrow beam antenna is employed to reduce the uncertainty

regarding the location of the target, through pivoting the

S'antenna aperture plane. Several such search procedures may be

necessary to pinpoint the target position within the desired

accuracy range.

For the two-dimensional case, a rectangular aperture of size
(2 a X 2 b) is considered with uniform illumination. A slightly

ioce complicated analysis results in the following beam pattern:

•(op) = 4Aab sin (ka sin cos_) sin (kb sin o_ sint) (51)ka sin 0 cos * kb sin 0 sin

-! where 0 is the angular direction of rotation about the main beam

direction.- A'

'I he two so-called principal plane cuts of the beam are

- obtained for • = 00 and o 900. If p 0, Equation (51)

reduces, except for the constant 2b, to Equation (50); if =
90°, a similar form is obtained with a and b interchanged.

* - Again notice that the function defined by Equation (51) is

* proportional to the illuminated antenna aperture area. The width

of the lobes in the principal directions are determined by the

aperture dimensions 2a and 2b. Taking (k a sin oo) = i/2 as a
0

measure of angular wid Ch in the principal plane, defined

by 0 = 0, an equation for beamwidth follows:
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0= sin 1 (x/4 a) (52)

"and similarly for the principal plane defined by * 900. If the

aperture length 2a is large, a small beam angle e0 results; if 2a

is small, a large beam angle is produced.

The same case could be analyzed for a Gaussian beam type of

antenna illumination. For the one-dimensional case

Z Z
/2 a

P(qA) = e-Aq/ 2 a (53)

Substitution into Equation (46) gives:

AV) A f e -nq /2 a e k q sin dq

-0 (54)

1,ka sin 0)
= 2Aa e -

Swhere the normalization in Equation (53) is chosen such that

* Equation (54) closely approximates Equation (50). The total

* incident power is computed for the two types of illumination in

order to compare the two cases.

For uniform illumination, ip(q) = A; hence, the iihcident
2 2

- power density is l+(q)I = A and the total power incident on the

- aperture is

-+a

S(q)I dq = 2 aA (55)

-a

Similarly, for the Gaussian type of illumination,

2 2
2q 2•Trq /a (56)
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and the total power incident on the aperture is

2 ' 2
2A f e dq 2 aA (57)

The Gaussian type of illumination results in a Gaussian beam-

shape as given by Equation (54), which differs from the uniform
illumination case by the fact that no minor lobes are present.

This accounts for the fact that Equation (54) is only
approximately equal to Equation (50). The uniform illumination

cae is Closec to radar engineering design, whereas the Gaussian

beam is useful for statistical interpretations.
This completes the introduction to the radar target

detection procedure. In perception, one will operate mostly in
the active radar reception mode. With sensors qi as body-

receiver system, acting upon target observables Pi resulting in a
"sequence of measurements: plq1 , p 2 q 2, . . .pqn, which are
combined into the phase term p~q = plql + p2 q 2 + . q pnq.
This would correspond to the measurement of azimuth and elevation

aricales for the radar target. The secondary field

-(p) corresponds to the 'attention' field of the observer.
Here, thle analogy with quantum mechanics is used,

X%'2
*'" where I,(p)I dp gives the probability, or estimate, that the

target is located within the parameter interval (p and p + dp).
' Because I (p))ldp is now a probability, the integration

corresponding to Equation (55) will be normalized:

fJ p(q)Idq f 10(p)I dp 1 (58)

R P
The target is considered located as a point p in n+l dimensional

parameter space P. The target return signal is simply the
function ý(p) of our attention field.

As was mentioned earlier, if external Gaussian noise sources
are present, a matched-filter receiver providtis opti'al c. ecept-ion

for this target-event encounter. The so-called received signal

at the output of the matched fil.ter will have the form of an

"autocurrelation tunction:
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p)= e 2ip.q/dq

(59)

= f *(pl)*(pl + p) dpI

"This function reaches a maximum for the matched condition, when
the direction of maximum attention field p. coincides with the

AA

target: direction p.This state is called the matched condition,

i.e., the target has been found and identified.

For the matched condition, the phase term p.q is small

(ideally zero) and, hence, Equation (59) can be written to first

"order

"g(p) = (I1 + 2ip.q/A) dq

(60)

I + 2 wip.qA/= e A/X

where qA is the average q-coordinate of the bell-s:iaped -

distribution and is usually located at the center of the radar

"antenna aperture.

Now, Equation (60) is analogous to the body-function Bp

derived in a previous subsection:

Bp = oei'A c(u + (p.qA)v) (61)

Here, a corresponds to the "signal" in cognition. From this

follows that the cognitive state corresponds to the matched state

of target acquisitiont

Some important consequences follow for the matched case.

For the matched case, the signal is maximum just as it should be, .

based on the autocorrelation function property. Reference to

Equation (60) shows that the maximum has been normalized to

I( . 1. Also observe the important identifications
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of u and v as the real and imaginary axes o' an exponential
function: g(p). Because these axes are the same coordinates for
the *(p) and *(q) functions, an important physical identification
is obtained: The u and v axes are the coordinates of the
observer's attention fieldl This identification will have
significant implications in quantum mechanics, where the i(q) is
a well-established physical concept related to observations.

Some simplifying operations are necessary. The imaginary
term 2 Tri/X in Equation (60) corresponds to v in Equation (61).
In quantum theory, however, the "length" of pointer vector p is
usually defined as = h k, where h = h/27 and where h is
Planck's constant, instead of Ifl = k 2 w/)/ as was done in
Equation (60). This amounts to a different set of units for the
measurement of jPl.

These units contain in both cases a "wavelength" X or a
frequency v = c/A, where c is the velocity of light. Hence, the
attention field *(p) can be considered to propagate with the
conventional term exp (wt-kx), where w = 2 rv. Be aware,
Shuwevec, thaL "propayation" ia Lhis snse occurs in a conceptual
space determined by the p and q variables, which makes the idea
physically less attractive. This problem also occurs in quantum
mechanics if many interacting particles are observed.* The
connections with quantum theory are further pursued in the
following subsection.

SSee FReferenceFll, p.fOW7
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SECTION V

COGNITIVE PROCESSES

Notational Developments Based Upon The Radar

Target Analogue Model

The previous subsection has paved the way towards a more

complete development of cognitive processes. A close analogy was

found to ezist between cognitive processes and beam formation

principles used for radar detection of objects. For cognition,

"these beams are represented by so-called attention-

fields ý(q) and 4(p). The "focus of attention" *(p) is directed

towards the target, just as occurs with radar observation.

"The attention field for the target reception mode is (p),

. whereas t(q) relates to the activation of body-sensors. Between

the two attention fields there exists a Fourier-transformreýlationship. 2i;

2rrip-q
4(p) p J p(q) e dq (62)

and -2wip.q

i(q) = J 4(p) e dp (63)

For this case, the units of p and q in the exponential are chosen

such that the most convenient representations are obtained.

Notice that Equations (62) and (63) are generally applicable

operations which may be used for knowledge formation. Target

acquisition is achieved through observation of a matched tilter

output

2 -nip-q
g(p) = f q(g) 2 e dq

= I 4(Pl) € (p1 + p) dpl (64)
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which is the autocorre]ation function for the signal *(p) received
from the target. This function reaches a maximum when the

direction of maximum attention field PA coincides with the target
direction p.

The "attention faelds" are to be thought of as target
estimation, or probability density fields, quite analoguous to the
quantum mechanical state functions. Hence

I [p(q)l2 dq f (P)I2 dp = 1 (65)

In statistics, g(p) is called the characteristic function belonging
"to the probability density w(q) = 1 (q)12. Close to the matched

condition, the phase p.q in the integrand of Equation (64) is

* small, and the following can be written:

g(P) f I(q) 12 (1 + 2ni p q) dq
+ 72i p q e

A= 1 + 2i p e (66)

where => stands for "the process which leads to the cognitive state
condition," i.e., to the matched condition; whereas qA stands for
"the average q of the distributioi;. Equation (66) may be looked

"upon as the basic formula for the "measurement of parameters p."
This will be more evident as the development progresses. Equation

(66) describes the basic process of detection, which is the first

step towards full target recognition. For the matched condition,

r- it was found that the maximum PA of the attention function *(p) is
directed towards the target, i.e., the target has been found an6

' its descriptive parameters have been measured. The well-matching

condition now requires that pclA = 0, which solves for the

"" condition p since q = 0 for the cognitive antenna-sensor

V." system. These topics will be a recurrent theme in subsequent

discussions.
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The formal connection with cog- Live theory, based upon A A =

A, is found from the correspondence of E'quatiori (66) wich the

*•[ "body-operation" B p

"..-'- 2wi p • qA

.p-.e 2' Bp a e a (u + 271 v (p q qA)) (67)

In Equation (67) the units for p and q were adjusted to correspond

"with the 2ni in the exponent of Equation (66), and the

requirement I = 1 was dropped momentarily, to be picked up again

at a later time.
SHence, as before, one finds the important identification of

u and v as the real and imaginary axes of the complex attention
fields. For the matched condition, a = 1 as can be seen from

comparison of Equations (66) and (67).

The general formalism for attention fields and received signal

"g(p) will now be written in a form familiar in quantum theory.
First, the Dirac notation for scalar product is introduced, i.e.,

< a b > = b = b4- (68)

where the star is complex conjugation and the arrows indicate row

(bra-) and column (ket-) vectors.

Similarly, the outer product

a >< b I ai b] a+ * (69)

is defined as the matrix with vector components products as

elements. The two notations in Equations (68) and (69) are
compatible. For example,

2 o

a >< b I) a >< b a >< b I = (a • b ) j a >< b j (70)

which shows the familiar idempotent rule emerging, if proper

normalizations are observed,
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Following Dirac, the representation of a ket-vector > asNI
a set of numbers < 4'! 4 > c introduced where < • is the

orthonormal set of eigenvectors which span a space z. Belonging

to each eigenvector is an eigenvalue 4' related to the eigenvalue

problem

> > (71)

where 4 is the operator, called an "observable". For the complete

set of eigenvectors,

J< 4! 4 = 6( 4 - 4 ) (72)

The above notation can be generalized to the case of a "complete

set of commuting observables" 41' g2"' " If there exists a

representation where all observables 4. can be made diagonal, then

the ket 0 > will have a representative < i 4`,2 " ... nI Cn >

or < C q, > for brevity. These representatives may be considered

as values taken on bL, a function l(4 ). Hence, we may define

p(4 ) =< p I 4> (73)

Next, apply this notation to the eigenspace of q-variables.

* First, consider one q-variable (observable) with associated

- eigenvectors I q'>. Similarly, as in Equation (73), a

*-. function i(q') is defined as

-'" (q') = < P q' > (74)

Now, this formula is substituted into the basic normalization

* Equation (65)

Set, RiCerence (12), 1l. I, p. 324.
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'2
. I i(q )I dq = f < i j q >< q I dq ---

S' ' '(75)
- < I I q >< qI dqj (I > < 4) I > -1

This result follows from the expansion rule

q >< q'[ dq I unit-matrix (76)

which is shown easily by multiplying on both sides with an

arbitrary ket I q >, and using the orthonormal conditions of

Equation (72) for the q-variable. Equation (75) shows that the

state vector j p > is normalized.

A similar approach can be used for the p-variables. Consider

the ket-vector above j ' >, expres.s;ed ini tecins oi" an orthonormalI I

set of I p > eigenvectors belonging to (eigen) values p , of an
observable p, then the function f(p ) may be defined as:

I S

P(P ) = < I P (77)

Substitution of Equations (74) and (76) into Equation (62) leads to

S p> = I q>< q 'p > dq
I I

< q>e2ri pqdq' (78)

from which follows the important identification
I U

< q'I p'> e 2ri p q (79)

The same procedure, substituted into Equation (63), gives
, , I

-2nip q (0< p q > e(80)
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as required of the scalar product inversion rule. For a multiple

set of independent observables ql, q 2 ,.. qn' and corresponding set

of p-variables p,, P 2  "'''t Pn' the following is obtained

SI I I g

<ql' q2' " q ni P 2 ' P2' 'Pn > <ql'i pl > < q'2 P2 >

' p = e 21Ti( plql+ p 2q 2 . q+ Pn1n) p2i q)" "<qn Pn >=" e(81)

where the shorthand notation is used:

< q < q1, q,'"....q I j < q1 < q2 <.- < q n (82)

These relationships are fundamental to the following definition of

average;

< q A f w(q) < q dq (83)

-Hence,

"� AI p> = f w(q ) < q1I p > dq
%, I I

f J w(q) e2 ri p q dq(• 'i•. -(84)

This is the characteristic function for the distribution

function w(q ). For the matched case, Equation (84) becomes

< qA p> > 4 w(q ) (I + 2-ni p • q) dq_

c> e 2ni p " qA ((85)

which is the same as Equation (66). Hence, for the cognitive

limit, < qA I p > agrees with Equation (79). Equation (85)
describes the basic process of measurement of parameters p What

10 4
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one finds trom Equation (84) is toat this process is simply given

by an average sensor state < q A "rect±ving" the parameters p

through a scalar product operation with the corresponding state

vector I p >. Another useful form may be derived from Equation

(84).

< qA' p > = < I B(p) I p > = < B(p ) > (86)

where

p qf I e 2 "i " dq'
B(p = q x q q (87)

* The operator B(p ) has the additive property

B(p + p ) B(p ) B(p ) (88)

which is easily verified upon substitution into Equation (24) and

usinq the orthonormal properti.. ; of I q •vecW.

On the right-hand side of Equation (86), the notation for

average valt for the observable, often used in quantum theory, is

observed.

Notice that the averaping process always is initiated with the

introduction of the observer's intention state I If p does
not appear in the equations, as in Equation (79) or (87), a

. structural relationship between operations is said to exist.
When ip does appear, it is called an intentional relationship,

Sbecause the observer's intention, or attention field, is

'* cepresented.

"•rom Equation (86), it follows that B(p ) may be considered as

the structural operator which initiates the "measurenant of p'".

The measurement itself is the result of an intentional average over

this operator.
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Another interesting result, which follows from Equation (83)
is

< =w (q ) (89)

which shows the probability density derived from the state,
*i-i• If < qA 1 were an eigenvector < q I, instead of an average of

these, the familiar result 6(q- q ) in Equation (89) would be

Sobtained. 
This shows that introduction of the state < qA I causes

a spreading of the distribution function. In contrast
to <q q > = , <qA qA > becomes

.< qA I A > < q A q' >< q' qA> dq'
0!. 2,,'

J w (q )dq 4 1 (90)

Hence, the < qA I vector is not normalizedl The following operator
will be used often in future work:

B = j qA >< qAI = q w(q) I >< I dq (9L)

- f (I q >< q A d2(4

The last step follows easily from Equation (89).

I A further useful development is to substitute a uniform
dlistribution instead of w(q ) in Equation (83). The following can
.now b! defined:

0I > = J q > dq (92)

Hence

<p 0 > P q > dq =6(p (93)
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and

<qt 0 > < q>dq= 1 (94)

The state 1 0 > thus acts as a kind of ground state for the q-

variables. In order to simplify notation, < 0 is not allowed

to represent the bra-vector corresponding to the ket- I 0 > for

the q-variables, as would usually be the case; instead, the

< 0 I notation is preserved for the corresponding state in the p

variablcs!

< 0 I < p I dp (95)

By using this (one-sided) convention for the null-vector, a

convenient representation scheme is developed. Hence

<A I 0 > = f <qA I q>dq 1 (96)

but
, ,

K 0 I qA > f K p I qA > dp = f f w(q ) e 2 7i p, q dqdp
wq , WA(97)

w(q 6(q )dq w A (o)

Similarly

< 0 j 0 > = l (98) r

If two operational definitions lead to the same cognitive-

state values, they are equivalent, although not equal operations.
For instance, it is easy to show that BA A x qA j in

Equation (91) is equivalent to

'A I q >< q 'A w(q ) iq >< q I dq , (99)

because
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< P1j qA >< qA PT > exp [2 ri(pT - q A] (100)

and also

< P1 J w(q) j q >< qldq I PT> => exp [ 2 Yi(pT - p) q qA] (101)
TL A

for all values of PT and P1 . The definition
BA = q >< q gives more information for the well-matching

condition under detection. This can be seen as follows. First,
evaluate <CqA q T > which produces the "received signal" as usual

q> A> exp[ 2 7ipT q A (102)

and hence the well-matched condition is PT q qA Next, the
following is obtained:

< P1 I qA >< qA PT> > exp[ 2 1i(pT - p).qA 1  (103)

and this leads to the well-matching condition PT = P]+
If one would follow through with BA = q x q 1 A , one would

find the same form

< 9 B > 2> exp[2ni -p

Pl BA PT >PT pl) qA (104)

"which is well matched if PT = Hence, the operator
- BA = A cA x qA I gives more information, because it also requires

that pT "q = 0. In some cases when this distinction is

understood, B - BA and, hence,

BA = I qA >< qCA I q >< q 1A = • w(qC) I qC>< qqI dq (105)

This observation is important because, if w(q ) is replaced by a

constant, the operator f w(q) I i>< qj dq becomes the identity
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operator I (see Equation (77)). Thus, Equation (105) may be viewed
as an extension of this identity operator for finite variances of
the distribution function.

By using a similar atgument, the following can be defined:

MA = PA >< PA P- >< P IA = J w(p) I p >< p dp (106)

This definition will be found later to be indeed the most correct

form to describe the sorting operation.

Cognitive Operations; An Introduction

The notational developments of the previous subsection are now
put to use to describe cognitive processes. These are the
processes which lead to cognitive states, for which the S>

q symbolism was assigned.
Essentially all these processes involve the maximization of an

integral, like in matched filtering processes. For detection, this
amounts to maximizing the received signal from the target, after
the signal has passed through a matched filter receiver. For our
purposes, only Gaussian noise sources were considered, which result
in the autocorrelation function for the attention field *(p) to
be received. The cognitive process consists of finding the
conditions when this function is a maximum. This is called the
matched condition, i.e., the observer's attention field, or

* expectation-field, is now matched to the target. In other words,
the target parameters have been received and measured through the

* optimum filtering procedure. All this was shown to be incorporated
by the formula

S, 2Ti p T "q '
-< qA i PT > f w(q 2e dq (107)

where the target is represented by the parameters:

PT= (p 1 ' P2 pn) For the matched condition it was found
that
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27ri pT q qA
< q A ePT > e (108)

In other words, the maximum strength of the signal received is

normalized to a = 1. If also the phase-term in Equation (108) is

zero, the target is said to be well-matched. Not all cases of

matching result in well-matched conditions. However, for cognition
to be complete, a well-matching condition is required. For the

detection case, it was found in an earlier section that target-

matching also results in well-matching.

As shall be seen, there are essentially two basic types of

cognitive processes. The first is called detection which was

discussed above, and it involves art operation in the space of q-

variables (the sensors). The second operation is called sorting,

and it involves an operation of a quite different nature in the

space of p-variables. The cognitive process, as it evolves in

time, consists of a set of sequential operations: detection,

sorting, detection, sorting, etc. This process follows the

sequence of body-sensors B and mind M operations in order from

right to left:

M B M B ... A A=A (109)

At each stage between M and B, a well-matching condition must

exist. This sequence also has a quantum mechanical analogue which

describes the Feynman path integral time-evolution of a dynamical

system. The quantum mechanical description consists of the
following sequences:

t3 t 2  t3 2 1

.- q 3 >< q31 P2 >< P21 q2 >< q21 Pl >< P11 q, >< qli PT > (110)

where each index depicts a new time interval for the variable p or

q, starting with t = t1 on the right-hand side, and t = t 3 on the
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left-hand side. On the far right is shown the target, represented

by state vector PT > which is exterior to the system.

"Notice that the sequence in Equation (110) is free of the

"observer's i > intentional state and, hence, is a structural

sequence, whereas Equation (109) includes the observer's

intention. In order to arrive at Equation (109), starting from the

sequence in Equation (110), one must introduce some type of

averaging process.

- It will be shown that a sequence of operations of the

following type will be obtained from the sequence given in Equation

(110):

A

t 3  t2 / tl

• ' A >qAl PA ><• PAl A >qAl PA><A qA >< qAl PT(I)

sorting sorting

detection detection

After one detection and one sorting operation is completed, the

process repeats itself with < qAl internally

observing PT > externally, as indicated by the arrow below the

sequence. The sequence of operations thus marches as it were to

the right after each matching operation is completed. A similar

process is familiar in quantum theory, based upon the sequence in

Equation (110), where the "march. .q to the right" is achieved by

integrations dql, dpl etc. For example, < pl moves to the

right:

• Later on we find an exception to this rule; < qA I can belong
also to the sorting process.
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j < P1j >q qlj PT > dql = ( 11 PT > (112)
by using the identity expansion rule. In our case, the procedures

and their physical significance are quite different, being based on

cognitive principles, but the idea of 'marching to the right' in

time is similar.

First, try to understand the sequence of operations in

Equation (111) . The operations which occur in Equation (111) are

the scalar products < PAI qA >. One has to distinguish between

operations which occur within one time frame and those that occur
between overlapping time frames. The latter refer to the so-called

dynamic case. For the static case,

S-2 ri p "qA

< PA q A> = f w(p ) < p i q A> dp S> f w(p )e dp

=>e 2 iA. A(113)

Hence, in the static case, the condition for well-matching between

mind and body-sensor operations is that - q = 0 su-h that PA and

qA are at all tires orthogonal.

This condition is familiar to radar engineers, where the
antenna system A is constructed such that at all times the maximum

direction PA of the main beam 0(p), which attempts to locate the
target at PT, is orthogonal to the antenna aperture space q, which
includes the vector qA" This, in turngives the position of maximum

intensity of illumination function g(q) on the aperture. The
"dynamic case, referred to above, is more complicated and will be

discussed later with the sorting operation.

Continuing our discussion for the static cnndition, it seems

*m tempting to associate mind with

MA A ><~ pA (114)

and body with

112
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BA qI > qA' (115)

iin Equation (111). For the case of well-matching,

< P q > 1, and the following can be written:

A = A >< < q /< A< q (116)

It is then easy to show that A A = A for the matched condition and

hence the basic law for cognition is satisfied. However, our

enthusiasm after this result is tempered somewhat because

MAMA = < P A > MA (117)

and, as was found previously, PA > is not normalized, i.e.,

'2<P A PA >=]w(p ) dp 1 (118)

The same holds true for BA- Thus. MA and BA as defined above are

not of the cognitive type. An even more serious objection against
relating BA and MA to the classical "body" and "mind" operations of
cognitive theory is that MA contains the state-vector PA > twice,

once as a bra-- and then as a ket-vector, whereas the classical
mind-operator M = v x v + PA x u contains the PA symbol only once
and then as a ket-vector. Similar arguments apply to BA. One way

"out of this dilemma is to consider the form of Fquation (116) on
the left only as a mathematically convenient way of writing A

cinitially, and because < p A qA > => 1 the duplication of symbols
in the matching process is eliminated,

Another procedure would be to introduce, instead of Equation
(116), the form

A = M B p P, >< 0 I 0 >< qA PA >< qA 1 (119)

Now a clear-cut, almost one-to-one, representation with the

cognitive theory is obtained. But, it turns out Equation (119) is

"113



not as useful as Equation (116), because Equation (11.9) already

describes A in the cognitive state, whereas Equation (116) on the

left describes the process which guides us to this state.

This discussion leads one to consider Equation (116) as indeed

the correct mathematical representation of the processes which

produce the cognitive states, although MA and BA are not direct
extensions of the classical mind and body states. This, however,

should come as no surprise, because one is dealing here with pre-

cognitive processes which only after the matching requirement

become cognitive states.

The matching procedure consists of maximizing a 'received

signal' strength a, to a maximum value a = 1. Once this is
done, one can properly speak of a cognitive state, where the

target, or object, has been detected within a small margin of

uncertainty. Finally, the well-matched condition is a process
which takes place within the cognitive framework such that now the

target is accurately pinpointed, or recognized, and the internal

framevwork PA replicates the target's PT" In other words, the
"o target's characteristics have been recognized and interpreted by

the observer's mind process and a replica of the external

phenomenon has been created in the space p of the observer's

attention field •(p).

These preliminary remarks are not to be construed as
definitive. In the following sections some of the definitions of
"mind" and "body" operation as introduced above will have to be

reFined and modified to suit our needs and for a more precise

delineation.

The Tjetection Process

"The detection process is the simplest to understand and to
analyze because of the radar-analogue which was discussed in detail

before. Consider the antenna with attention field ý(p) trying to

lock on to the target. The maximum beam strength is pinpointed in

direction PA" The target manifests itself by its "location"

parameters pT 1(P' P2' . . . . 'pn)" However, as was found before,
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only the direction of target location can be measured. Hence,

instead of PT only PT' the unit vector of PT' can be measured.

This remark gives a clue to the detection process, and it also

opens up the need for further processing, which was called sorting,

and which is discussed later. Whereas sorting is a strictly

dynamic process and has no static equivalent, the detection process

works only under static conditions. Thib is because the internal

locking operation PA qA = 0 or PA 1 is built internally into

the system and is independent of where the target is located. The

vector qA locates the maximum field strength on the antenna

aperture, which carries the space of q-variables, and thus qA also
I is located in the antenna aperture space. Hence the condition

PA " qA = 0 also points out that the search for the target is done

outside of the q-variable, aperture, space. This is characteristic

for a remote sensing mechanism. Connected with the remote sensing
*i aspect of detection is the fact, noted above, that only the

direction PT of the target can be measured. Hence, the p-space

of the target has an extra dimension: the distance or range of the

target. As will be seen shortly, it is the remote sensing aspect
of detection which makes the target matching operation possible.

If the spaces of p- and q-variables coincided, no detection of

target features would be possible.
Still another way of looking at it is to consider the antenna

aperture q space as generating a wavefront, of the attention field,
which propagates to or from the target. For the detection process,
one is not concerned with the movement of the wave front itself

*t which is a dynamic process and which, of course, also depends on
the movement of the target as the antenna is locked on and follows

*• the target motion in p--space. The detection process deals strictly
with the locking-on operation, i.e., the direction of theSPA O

aperture, q-variable plane, and not with the propagation aspects of
the wave front represented by the aperture plane. The "propagation

*Later on this condition will be relaxed such that PT is no
longer restricted to a unit vector.
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constant", which fixes the length of vector pA' is determined by

the sorting process.

Having thus made clear the distinction between detection and

sorting, we now proceed to analyze how the detection process

operates. The so-called received signal from the target, based on

an ePcpectation function O(p) and corresponding .(q), is given by

the characteristic function
27 -• q

"< qA) PT> = J w(q) e2'PT dq (120)

2
Here, w(q) =*(q)I is the target estimation function; it

represents the observer's initial guess where the target might be

located. Usually, the wider the distribution function w(q), the

more sensors activated and the sharper the corresponding target

beam function Iý(p)l2 will be. If one substitutes a Gaussian

"estimation function for w(q), one finds

-22q1 - 2--__q_-qA 2 iP"q

(< qAIPT> f e e dq (121)

Some notational conventions have to be cleared up. The vector q

"consists of n components q = (ql,q 2 ,...,qn) which define the q-
0J space. Similarly, the target vector PT has (n+l) components. The

extc-a dimension of the p-space accounts for "remote sensing", i.e.,

the target is considered to be located at some large distance apart
from the observer's "body-sensor" system of data gathering

devices. In that sense, the target is "remote" from the q-space
sensory mechanism. In radar-terminology, the target is located in

the far-field of the antenna system.
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-_interpretationPA vector"

target R Pl
location T

Sq-plane aperture space

Figure 4. Remote Viewing Geometry

Figure 4 illustrates the remote viewing geometry. For the scalar
* product, one now derives the important relationship

PT q = pI" q = p1 " q sin o (122)

" where p, is the part of PT which is parallel to the q-space. The
integration of Equation (121) can now be performed with all vectors
located in the q-space. The symbol o in the demoninator of the
exponent stands for a diagonal matrix containing the variances
while V 27noa in front of the integral is the symbolic notation
for the determinant of 2  matrix

-,i.e., al o det(f/W-n a) Hence, £ (q -q 2 is a

symbolic notation for 2
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S2 q..
2/02 ~2 2A q2  2AL /~j L&-2~ [n-~~ (123)

With these provisions, the received signal Equation (121) is

"evaluated as follows;

2 .2

2 p1 " pl sin 20 2wi p1 " q sino
< Al P = e e (124)

"The matching condition is now apparent. The amplitude-signal part

O in Equation (124) becomes a maximum signal of unity if e = 0, in

"which case, PA points in the direction of the target PT The
phase part then also becomes zero, i.e., the matching condition also

"produces well-matching. The matching conoition also gives insight

as to how the detection operation works. The angle a is made to

approach zero by tilting the whole q-space or antenna-aperture
plane while keeping the beam-function ý(p) fixed to this space. By
doing this, one achieves that pA " qA = 0 is satisfied under all

conditions. If the target is found, 0 = 0 and PA points in the
*target direction, i.e., p =A

This technique for measuring a set of target parameters

"(pn) is different from a sequential set of independent
measurements plql, P2 q 2,''', Pnqn- Here, the sum is measured as

the total sum phase (p - q) and the individual components are
resolved by the locked-in condition PA A qA = 0. Also notice
"that the variances oi can be cho':er almost arbitrarily. Obviously,

the larger one chooses each ai' the sharper the beam-
.. function ý(p) will be, which results in a correspondingly more

accurate target parameter measurement.

* "-The matching process described by o + 0 actually consists of

" two separate procedures which are called matching and well-

" matching. There are two ways to describe this. The first is that
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of optimizing the signal, i.e., target-matching is done through the
.2

limiting condition sin 0 + 0 . In other words, matching comes

- first, after which one has well-matching.

"Another way of explaining these processes is to observe that as

0 becomes small, one can write for Equation (120) in the exponent

< q Al pT > w(q) (I + 2ri PT q sin 0 ) dq =

( i^ i 2
li PT qA sin 0 (125)= (1 + 2,i PT q A si n 0) 0

Hence, the matching condition has been satisfied; only well-match-

ing (making the phase equal to zero) is to be accomplished. This

shows there are indeed two independent processes at work.

In summary, the detection process was shown to consist of the

permanent condition PA qA = 0, or < PA' A > 1, and the

matching and well-matching condition < qA PT > 1. Combined,

these processes amount to the condition

"< PA IA >< qA I PT > = (126)

This was called the detection sequence in a previous section. Now

a prime was added to PA in Equation (126) to indicate that P'A in

this case does not indicate an averaging of states < p I, but

Smerely a labeling of a single state with value P'A which

Scorresponds to the maximum beam function O(p). Hence, the process

of Equation (126) can be rewritten as

< PA P > = 6 LpA - p (127)

* which now agrees with the matched condition of Equation (126) if

P'A = PT" By comparing Equations (126) and (127), one has an

Sexample of the "marching to the right" principle mentioned in a

previous subsection. The integration over q-space amounts to
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replacing BA= IqA x qAl in Equation (127) by the unit matrix,

which moves < p' to the right next to p >"

Notice that the "remote sensing" requirement that the target

vector PT is a unit vector does not play an essential role in the

equations tor detection. Hence, one may relax this condition for

the geniral case and assume that target parameters PT = (PP P21
.. pn are measured without the unit vector normalization. This

generalization removes an undue restriction on the internal

representation p A which is used for the sorting operation. The
details of the sorting process are discussed in the following

subsections.

Introduction to the Sorting Process
The sorting process is in many ways completely different from

detection of the target. Sorting is an internal dynamic process

operating in p-space after detection as an operation on q-space is

completed in one time period. One may wonder what else must be
done after target paraluters have been measured.

What comes after data gathering is usually called data
processing. Hence 'sorting' may be identified as some type of data

processing. Whereas data processing consists of almost any
operation on the data, such as taking averages or obtaining

correlations, the sorting process will be shown to have a very
specific purpose: to identify the target as a true object! This

nmay seem like an ambitious project strewn with conceptual
difficulties, but one can show that there is a systematic path to
be followed towards this objective. What makes object-construction

seem difficult is that a subjective element is involved with making
' the decision that something is an object.

Clearly, some analytical principles have to be developed first
before much headway or understanding towards solving this problem
in perception can be expected to take place. One must strike a

balance between the mathematical presentation and the physical

interpretation at each step of the development. As is usually the
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case, the most difficult problems are conceptual in nature, and

here one is dealing with the very nature of what "being a concept"

for an object means! Hence, progress will be slow at first and
systematic. On the mathematical side, there will be the definition
of what constitutes an object and its connection with the sorting

process. Ideas related to memory and experience will provide the

subjective basis for these developments.

The sorting process itself has an analog with the Feynman path
integral time-development of an elementary free particle. This was

described previously as the process

< q21 p, >< PlI q1 > (128)

where the indices relate to variables in different time frames,

i.e., I q = I ql tl>, etc. Notice that there is some ambiguity
in the notation used in Equation (128), because there is no

explicit presentation of time, as the system evolves. The
classical way to introduce the development in time is through the

time-evolution operator

< q 2  Pl> < q 2  e- 2 i • P 1 > (129)

where c = t 2 - tI denotes the time change between the two states,

and H is the classical quantum mechanical Hamiltonian operator
which stands for total energy of the system. For an infinitesimal

time interval, one obtains from Equation (129) the regular

approximation*

< q 2 I p> e 2 PI q 2 e 2ri . h (pl 1 q 2 ) (130)

See Reference (13), p. 432.
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For the classical free-particle with mass m, one has

2
P1

h(pl, q 2 ) = 2-m- + V(q 2 ) (131)

where on the left side is the total energy and on the right are the

contributions from kinetic energy and potential V(q 2 ). The theory

can be developed based on these relationships, as was done in

Feynman's original work . For our purposes, however, one rather

looks upon Equation (131) as an approximation of the relativistic

form which is valid only for small velocities, i.e.,

2
c - 2-- 2 P

h p= c m c + Pl mc + 1 (132)
c

where c is the velocity of light and pl is the relativistic formc **
for total energy (actually h = c p1  is energy). In the

following part, as in Equation (132), one neglects the effect of

potential V(q 2 ) on the dynamics of the free particle such that

the equation for energy in Equation (132) becomes

2
c 2 2 (133)
1 M l 1

where pm = m c. If now one substitutes Equation (132) into

Equation (130), one gets a curious relationship for Equation (128):

c2Tri(q 2 - ql) " p, -2wi e c pC
< q21 p1 >< pli q > = e (134)

Notice that the dynamic time-change Pc= E c not only defines a

change in q-state by u = q 2 - q1  but also induces a new

parameter p, One could also have written for Equation (134):

* See Reference (14).
** See Reference (15), page 118, equation (23) for derivation.
*** The effect of potential will be introduced later.
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"< q 2  ict 2  P1 ' iPl >< P 1 ' iPc I ql, iCt >
2- 2 c1 1135)

=e2 i V * P - 2Tf i U p 1

Notice the introduction of complex parameters, familiar in special

relativity, although the introduction of the same i on the left-

and the right-hand sides of Equation (135) should be used with some

caution. For our purposes, one may consider Equations (133) and

(134) as the basic equations related to the system.

The cognitive sorting process is described as an event in p-

space by the mind-operator MA which is now defined as follows:

< q 2 I MA j ql > = p wlP) < q 2 I P >< p I ql > dp (136)

After substitution of Equation (135), this becomes

-2Tri (cpcp
< MA I q, > = J w(p) e dp (137)

* where primed subscripts were omitted in the integrand. One notices

"-" at once the difference between the sorting process and detection of

the target. An extra parameter, defined by Equation (133), has

been introduced, which is due strictly to the dynamic change that

has taken place.

"Our derivation of Equation (137) was based on the quantum-

mechanical analogue. It will be of foremost importance to assign

to Equation (133) a more fundamental significance, which relates to

our objective: to define the object in terms of the known measured

data, by some type of sorting operation which leads to target-

identification.

The key tc this development is Equation (133) which introduces

.U. two new parameters, pC and Pm' that are internally related to p by

Equation (133). In classical dynamics these parameters stand for
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the total energy and the rest-mass energy of the elementary

object. It is clear that substantial progress can be made if one

can attach new and more general significance to these classical

parameters. These questions will be left for a later discussion.

At this moment, one can evaluate integral Equation (137) based

on methods introduced with the detection procedure. One first
looks for conditions for which the phase in the integrand C

Equation (137) becomes stationary0  In classical mechanics this
condition defines the equations of motion for the elementary

particle.

Another way of looking at this condition is to observe that
one is searching for conditions that define a stationary phase-

front in p-space at each moment in time. As time progresses, the
description becomes that of a moving wave, its phase-front moving

in time through p-space. The particle or object motion is then
associated with a set of trajectories or rays which are orthogonal

to the stationary phase-front. The object or particle is then said
to move along one of the ray-path trajectories in p-space according

to the laws of motion which define the stationary phase-fronts and
which, by the same token, also define the object. The only thing

still missing from this process of object formation and
identification is to justify the introduction of Pm as the "mass-
term" of the object. The analysis of this question will be

postponed until a later subsection.

In summary, the sorting process thus turns out to be the

search for the definition of the object, if its basic parameters in
time are known from the detection process. Hence, sorting is 'a

equivalent to jLaet identification.
From detection, one knows what the target data are, but not

how the data relate to the target as an object. The fact that a
dynamic process is required for target identification is

significant because it suggests a statistical averaging scheme as

the basic process by which one comes to "know" objects. In other
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words, one may expect that experience and memory will play a

substantive, subjective, and supporting role in the process of

target identification.

(The reverse of this page is blank)
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SECTION VI

EVALUATION OF SORTING INTEGRALS

The sorting process in cognition is essentially an attempt

at target-formation and identification using a given set of

target parameter data. The process is described by a so-called

sorting integral. The aim is to find the conditions under which

"the integral is a maximum. These are called the target sorting
matching conditions.

The situation is analogous to optimizing the action-integral
in classical mechanics. The matching conditions there lead to
the equations of motion for the physical state under

consideration. The sorting integral resembles a type familiar in

quantum theory. There they are called Feynman path integrals.

Sorting integrals are more general because they contain a

probability density, whereas path integrals apply only for a

uniform density. All this will become more apparent as the work

progresses.

The One-Dimensional Sorting Integral

In this part, a Gaussian probability density w (p) will be
considered. The simplest case is for the target parameter
"variable p to be one-dimensional. The sorting integral takes on
the following form:

(p p)2 -27 i (-. p2 P p)

Is = ~ -e dp (138)

"The integral appears to have four constants: a is the standard
deviation of the Gaussian density, PA is the average value, X is
a non-negative constant which contaia•s the time-change,
whereas p relates to sensor-changes. The integration ranges over
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all values of parameter space p. The integral in Equation (138)

has a closed form solution:2
2 - 2 2

- 2 (XPA ) -21Ti ( P (p2> _ "PA (
I e e (139)

This result is highly significant, as will be found shortly.

Notice that the solution of Equation (139) consists of two

exponential terms. The first term, called "signal", is real and

it reaches a maximum of "one" when X = X PA" The second term is

a pl-ase term. It is called the "phase residue." Notice that the

phase residue in Equation (139) is simply the phase term in

Equation (138) with averaged values in the exponent.

Also observe that the matching condition X PA also is

found from

d d 2 0, (140)S~dp (2 U P)A

i.e., -e phase term of the integrand in Equation (138) is

static y at the point PA' This last condition is useful,

because it can be applied as matching condition also when the

distributiin function is not Gaussian.

Also notice that the standard deviation a does not enter

into th. natching condition. If a is large, the signal in

Equation (139) falls off rapidly from the maximum, such that it

is important that X = P PA applies strictly for locating the

maximum. If a is small, a broad maximum for the signal is

observed; for this case, it is not as essential that X = p PA is

strictly satisfied. These observations are important for later

developments.

* Next, the results are generalized. Consider the one-

dimensional sorting integral

-2w i f(P)d
I= wA (p) e dp (141)
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where wA (p) is a general density with average value pA and f(p)

is a general phase term. The interest is mainly in contributions

to the sorting integral in Equation (141) which come from the

neighborhood of p PA. Hence, the phase term can be written

S(P) A + f " - PA) + (P (P . . . (142)

The matching condition requirement, when the signal is maximum,

amounts to the stationary phase condition f 0, for f (p).
A

Hence, if the signal is matched, Equation (142) can be written as

f (P) = fA + 2 (p - PA)2 + . . (143)

where f A =x o0

Substituting Equation (143) into Equation (141), we obtain a

sorting integral of the form
S~2-2•i i (n - rA) + .- 2,T- fA

Is f WAkp) e C2 rA dp e (144)

And because (p - pA) is small in the neighborhood of p PA' the

exponential phase term can be expanded and integrated as follows:

[ - 2 -2wifI f WA(p) [I - 2i (p - pA) + . dp e A
-A 2 2

=[i - 2vi -ý < (-pA2> + . ]e-2iA=
[12 (p-p >PA)

--27i (fA + < (p P >2 + ) -2ni < f(p) >AA 2 A e A (145)

This result agrees, with good accuracy, with Equation (139) for
the special case of a Gaussian distribution function. Hence, the
general rule is the "residue", after matchina, is the phase term

of the inteqrand in Equation (141) with averaged values in the

exponent.
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Next, the "residue-averaging" rule is investigated to see if

it also applies for non-matched conditions. Start with a phase

function expansion around a point PB as follows:

I '! 2

f(P) f B + fB (p - PB fB (P PB) + . (146)

The condition is imposed that the phase-function is stationary,

f'= 0, such that

S~2
f(p) = fB + -21 (p -PB) + (147)

where, as before, f. = > o The previous argument will be

made that only values close to the stationary point will

contribute substantially to the sorting integral, and that a

power series expansion of the phase function Equation (147), as

was done in Equation (145), also is applicable to this case. For

the non-matched case, however, a factor appears for the signal,

which for the matched case was "one." Hence, the series

expansion in Equation (145) of the exponential is not directly

applicable here.

The signal and phase residue are easily computed if Equation

(147) is substituted into Equation (138) and the result is used

in Equation (139):
22 2

- 2 I (PA - PB) -27i < f(p) >A
I =e e (148)

S

This result, of course, agrees with Equation (145) if PA PB' in

which case the signal is matched. Therefore, the "residue

exponent averaging" rule also holds for the non-matched case.

Equation (148) is very useful in evaluating the sorting
integral for a general phase function f(p). The procedure is to
select a desirable "object-point" PB, expand in a power series

around that point, implose the stationary rule at PB, and use the

result in Equation (148). In the end, the matching requirement
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forces the relationship PA = PB" It thus seems that the initial

freedom of choice of PB as a desirable object-point is done away

with in the end. This is true for the one-dimensional case, but

different options ace available for the N-dimensional cases.

Even in the one-dimensional case, it is not strictly
'= 0 If the first

necessary to impose the condition fB "

derivative is left in the series expression of Equation (146) and

Equation (145), Equation (148) becomes
22 2

S- (PA - PB) - PBI -2•i < f(p) >A

I I = e e (149)

The matching condition is now X (P - PB= which suggests

that indeed PB may be chosen arbitrarily. In fact, the deviation

of PB from PA is measured by the first derivative VB = -fB it

appears, however, that the last condition has less practical

interest. The latter case may be translated into the

condition pA = 0 which has real physical significance because it

specifies that the stationary point of f(p) is located at PA-

This is the original case. The condition isdp = 0at PA
central to the understanding of the sorting process. The
following sections will show how this condition is applied to

more general cases.

The Two-Dimensional Sort tt ýntýeal

Consider the case where the parameter variable p consists of

two independent measured variables P1 and P2- The sorting
integral is, as defined in the previous section,

Is =J ]wA (PI' p2 ) e-2ii f(Pl' P2) dpl P2  (150)

Because P1 and P 2 are independent, the densities are separable:

WA (Pl P2) = WA (P 1 ) WA (P2) (151)
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Let the phase-function have the normal form:

1 2
f(Pl' P 2 ) (Pi Pl + V2 P2) + 2 (ll p1  +

2 (152)
+ 2 A1 2 PI P 2 + A2 2 P2)

For Gaussian densities, Equation (150) can be evaluated based

upon the one-dimensional case solution. First integrate over P2'

which gives a signal term and the exponent of the phase residue

< f(p) >A2 . Both signal and phase residue are still functions

of Pl. The matching conditions still do not depend on o. For P1

"and P2, the following matching conditions should be satisfied:fI
11i PAl + .1 2 PA2

(153)

"112 2 2 PA? + A12 PAl
(154)

Now, check it indeed these conditions are met. For the signal

after integration with P2, find an exponential with exponent

2
02 2

S( 2 2 PA2 12 Pl P2) (155)

which clearly shows the dependency on p1 . Now, substitute the

q Equation (154) into Equation (155) which gives

2 2" 02 A1 2  2

2 (P1  - P I) " (156)

Combined with the exponent of the density-term for Pi' the

density exponent now becomes

1- (o- + 2 2 - )2 (157)
1~ (a 2 A12  ~P1  AI

132

" ," " 1 " I I l n u n u n , , , . ...



Upon integration with Pi, the matching condition for P, is indeed

satisfied by Equation (154). What has been changed by Equation

(157) is an adjustment to the standard deviation of P1 which now

becomes

2
'2 al

2 2 2 (1582
1+ o3 1 2 12

IL the coupling term X12 is small, the

adjusted a, approaches 01. Obviously, if the integration had

started with p1 , the roles of indices would have been

interchanged in Equation (158), which shows an asymmetry. A more

serious objection is that the change of scale due to 01 effects

the integration, such that the matched condition for the signal
is no longer "one". These results clearly show an inconsistency

"-" in the above approach, because there should be symmetry in the

matching conditions for P, and P2 taken together.

The mistake made above was to consider partial derivatives

in one variable as a suftficient procedure, without taking into

account boundary conditions of all other variables. The correct

"matching condition will be shown to be

V f = 0 (159)

" where

C-- .' " ) (160

is the conventional "del"-operator. Equation (159) expresses a

stationary condition for f(p) at the point PA' Applying the

operator in Equation (159) to Equation (152), we obtain:

" " ll PA1 + X1 2 PA2 (161)

"w2 A2 2 PA2 + A12 PAl (162)
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which agrees with Equations (152) and (153) and which is

- symmetric in the p variables. Now consider Equation (159) as the

physiýcaljyj_ and mathematicallj correct condition for target

matchinq in the n-dimensional case. Hence, the sorting integral

in Equation (150) indeed obtains the signal "one" for that

condition. The residue-phase term then has the

exponent < f(p) >A' as usual, where the average is taken over

both P, and P2 variables,

The evaluation of the sorting integral for general

expansions of f(pl, P2) follows lines similar to what was done

for the one-dimensional case. Details of this will be discussed

with the extension to the N-dimensional case which is presented

in the following subsection.

The N-Dimensional Sorting Integral

The general sorting integral describes the process by which

a "target" is formulated from a givcn set of observation data

pi. The essential details of how this process is arrived at from

general cognition principles and how this works with spcific

applications are postponed for a later discussion. Of concern

here are some elementary integration properties of a so-called

sorting integral of the type

-" - 2ri f(p')
i I WA Is') 2wA (p'))e dp' (163)

The density function wA (p) contains the information selected

from available data on which our attention is focussed. The

phase-function f(p) contains the selection process. Of interest

"is when f(p) constant to describe "phase fronts" which

Spropagate throu• ¾ the n-dimensional variable - p space.

If V f(p) 0 for some point PB' the phase is said to be

stationary at that point. The main contribution to the sorting

integral may be thought to come from the neighborhood around the

134
ID

........................... _
-.- •-'• .•"i: ;: ' .i" •".".• -.. .. .-.-- . . ..-. ... ..-. ..-. .-.,... •°,' ,. ' ,. , 2° , • -- -. : ' ' -" • . " -,." "... . " -• - --. .



stationary point PB" Hence, it seems natural to start with a

general, vectorial, Taylor expansion of f(p) around PB; i.e.,

1 2
f(p') = fB + p' - PBf "P' - PB +

(164)

where the standard notation used is

V -( ' ) (165)

The label p' was used for the integration variable in the sorting

integral in Equation (163), while p is reserved for

differentiation.

First bring f(p) to a so-called normal form by introducing

new integration variables p" = p' - PB" The average for p" now

becomes P"A - PB, and f(p) reduces to normal form

f (p") = fA + (p" " V) fB + 1 (ps . B +)"f" (166)

The diffeLentiation process on f(p) is completed first, before

values p = PB are inserted in Equation (166). The third term is

expanded as follows:

I(p" V)2 = (p" dI + P" d 2 + ... ) (p" d + P" d2 + ... )

2 2 "2 2
= d I + p2 2  + .. + 2p1 p2 dI d 2 + (167)

Here, for short, d' i 1,2, . ., n. The following
symboiic form will also be Aeeded:

(p, * V) (p" * v) =PI p" d + PýPol d2

+ (PI P" + pI p") d, d 2 + . (168)
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Hence, in general

(p' * V) (p" • V) fB AIPIP +A 2 2 P2P +"

I ml
w+ A1 2 (P P +i + P2 + " + (169)

wr a 2 f(p) B (170)ap.i ap

This identifies the A used previously. One version of the

normal form for f(p) in Equation (166) can be expressed as

follows:

1 "2 " 2
f(p") =f B " p' + 2 (A1 1 P + +2 2  +

+2 1 2 p1 p2 + " " (171)

"where LB = - B (172)

The matching conditions are now seen as

'I

IBi =il PAl + Ai2 PA2 + " (173)

or, in vector notation, remembering that PA= PA -PB'

B -VfB = V (P" " V) fB (174)

The last form is derived from Equation (169).

A second version of the normal form for f(p) is derived from

Equation (166), expressed in the variable p', where

P= P'-p and p A

f(P = f p' -fp " ) + 1 (p' " V) f +
"(176)
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where

f0 fB + JB " + 2 " V)2 fB (177)

The matching conditions now become, remembering that P'A =PA

U' B + V (PB V) fB = (PA " (178)

It is easy to verify that Equations (174) and (178) are linearly
related through p" = p- B The full significance of Equation

(174) or (178) will gradually become clear in the following

subsections when specific examples are discussed.

PB may be thought of as having some preferred status, such
that it seems natural and desirable that the phase function f(p")
is stationary for that point; then V fB = 0 . From Equations
(174) or (178), it then follows that p A 0 and, hence, PA -

PB" This is the natural extension of the one-dimensional case.
For the n-dimensional case (n * 1), however, other

possibilities will open up new avenues for target-decomposition

and identification. The basic framework is that under certain
conditions V (p )B = 0. Then if V fB 0, it follows
that another solution of Equation (174) will be p" c pB where
c is a constant. Then pA = PA + PB = (c + 1) PB r and PA and PB
are found to be proportionally related. For this case, the

freedom of choice of PB' given PA' consists of choosing the
constant c.

For certain value of c, it is possible to choose the
decomposition PA = PB + p• such that PB and p" represent

"orthogonal objects". This resembles the creation of particles
and anti-particles in quantum theory. In cognition, an
orthogonal object is that object which is dissimilar to the

object under consideration.

If the extra condition V (PB " V) = 0 is not valid, only
the value c = 0 may be chosen; this restricts the possibilties
for target decomposition. Hence, it will be of some consequence
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to study the possibility for satisfying the extra condition.

These questions will be addressed in the following subsections.

The result of integration of Equation (163) will again

produce two exponentials: one is the signal and the other, a

phase term, is called the phase residue. After the matching

conditions of Equations (173) or (174) are satisfied, the signal

becomes "one", anI the phase term is the same as in the integrand

of Equations (163) with averaged values < f(p') >A in the

exponent, as was discussed before.

II The significance of the phase residue is that it can be used

for memory to classify and recollec: the event represented by the

sorting process. Details of this will Lollow.

1
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SECTION VII

APPLICATIONS TO TARGET IDENTIFICATION

Identification of Standard Objects with Euclidean Norm

For this section, we will illustrate the sorting process as

it operates on a class of objects p with the most simplest type

of norm function po. This case will be the prototype or standard

model for more complicated structures. We recall that the

sorting operation was found from the dynamic process

<q 2 1p x -21A q1> = f 'A (p) e-2i (uop° - U-p) dp (179)

Here, P, and ql refer to object parameter and sensor states at

time tl, while q 2 is the sensor state at time t 2 and uo =

c (t 2 - tI) represents time change. The change of sensors is

given by u = - ql. The Euclidean norm is effected by

(p) P 2 + 2 + (180)

Hence, given are measurement data on a collection of individual

objects with parameters pi, each with a characteristic Euclidean

norm in Equation (180). The sorting process consists of sorting

out the data such that a best fit results in an average

target pT with norm PoA PT PA The residue
N TA T O A PA

PA PA PA contains what is left of the average measuredT
data PA after the average target TA has been removed. Notice

that the norm property of Equation (180) holds for each

individual measured target, but in general poA 1 'PA' This

follows from the triangle inequality for norms.

Next, one looks for conditions for which the sorting

integral in Equation (179) is maximum. Consider the general

phase function

f (p ) 0U po (p ) - U • p (181)
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"where the prime indicates the integration variable. The matching

condition was previously found to be

"V A = 0 (182)

This could be applied directly to Equation (181), giving

u P u (1-83)

The significance of Equation (183) is not obvious, because PA is

not an object-parameter vector but is the average of input

data. Instead, one could expand f(p') in a power series about

the desired object pT as follows

! T + ,T 1 " 2 T
f(P f A + (p V) fAT + I (p V)2 fA + (184)A + 2 A)

T T
where fA T f( PA and similarly for the higher order terms,

iesubstitute p after differentiations have been

performed and finally p = P - p• . The matching condition
of Equation (182) applied to Equation (184) gives

T N T
V fA V fA + V (PA f A 0 (185)

N Twhere pA = PA PA (186)

TIt is required that for the selected point pA the functionI

f(p) becomes stationary, giving

T = 0 (187)
A 4

* which reduces the matching condition of Equation (185) to

N T(1)
A cp . v)A
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All this was shown before with the general discussion of siorting

integrals. These conditions are now applied to the Euclidean
norm of Equation (180). Equation (187) thus gives

Uo PA u. With the definition

uO= T (189)
~oA

Tthen u P (190)
T

Comparison of Equations (190) and (183) shows that TA and PA

must be proportional vectors. Equations (189) and (190) are
highly significant; they express the equations of motion for the
dynamic sorting process. Recall that u = c At and u = Aq.0

Hence, (190) gives the "momentum" T = mt for the motion of

an elementary particle with energy poA mc 0 , where

(-(v/c) )2as usual and x = At/ms is a measure of time-

change.

Thus, the conditions of Equations (189) and (190) express
the dynamic behavior of the sorting process. Out of the
preliminary data pi, with average PA' one can sort out the object
structure pA which is proportional to PA but not necessarily
equal to it. This depends on the condition of Equation (188)
which is discussed next. This equation is satisfied byN T

PA = 0 or pA = PA which is one solution. But as shall be
seen, there are other solutions because for the Euclidean norm

T T

V ( PA V J = 0 (191)

By direct differentiation of f(p), we obtain

' "UO 0 (192) ,
(p V)(p V V) f(p) Po (p " p ) - (p " P)(P " P) (192)
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for any general fixed vectors p' and p". By substituting" T - T
P PA and p p T Equation (191) follows. Equation (188)

may be satisfied by any vector PN proportionalT N T T
to PA T PA = c P T Then pA = (c + i) p T after Equation

(186). Of particular interest are the cases c = 0 and c
(I - d)/(l + d), where poA = d PA , d > 1

The case c = 0 corresponds to a decomposition of a Stokes
vector into a completely polarized part which has object
structure and a completely unpolarized, unstructured, or vacuous
part.

The case c = (I - d)/(l + d) corresponds to a decomposition
of the distributed object into two objects which are orthogoual
to each other, i.e., two contrasting or dissimilar objects.

When initially PA = 0, one starts with the so-called vacuous
state, the last process results in the creation of two anti-
objects: one h-is the state (p T pA) the other (p T -PAT

______ th ohr~ oA A
All this is familiar from similar processes in quanntum

mechanics. In summary, the Euclidean process consists of several
possibilities of target decomposition. The first extracts from
the available data the single average object which it most likely
represents, the residue being "empty" in content or structure.
This amounts to:

data = meaningful object + residue, i.e.,
impression of a tree = "tree" + non-differentiated debris.

The second method e::xracts from the data two meaningful but
opposite targets:

+t

aquarium = fish + non-fish (water tank, glass etc.)

These are the first concrete results which are derived from the
%! general theory. The following subsection will give an example of

the preceding case.
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Example of Stokes Vector Decomposition

The preceding case can be illustrated with a simple case ot
a Stokes vector. Equation (181) can easily be put in a Stokes

vector form:

f [:0 (193)

-2 2 2where Po  p1  2  + P 3  "p 1194)

T ndu= PT
and similarly, since uo = p and u p A

we have: u 0 u * u (195)

Hence, the scalar product (193) depicts the product of two Stokes

vectors:

f(p) = u0 PO - u • p (196)

The operation of target decomposition thus reduces, for this
case, to a decomposition of Stokes vectors, which takes the

familiar form

PoA PoA O (197)
T +

TT Nwhere pA PA and poA PoA + Po and the 'object'-rule for a

completely polarized wave PoA A holds.

The above decomposition thus replicates the division of a
partially polarized wave into a completely polarized part and a
completely unpolarized part.

Another version of Stokes vector decomposition consists in
dividing the partially polarized wave into two completely
polarized but orthogonal components. This corresponds to a
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decomposition into a object (c.p. wave I) and anti-object (c.p.

wave II) as follows.

PoA j 1 oAj +PoAJ (198)

p [-P
The first decomposition focuses on separating from the data

a "target" or object plus residue (u. p. part). The second

version focuses on a distinction between target and non-target.

Example:

Consider an aquarium containing a fish.

In the first case, one concentrates on the object-fish

exclusively, such that the rest becomes residue or noise. In the

second case, one differentiates the perceived data into "fish"

and "nonfLsh" objects. The "fish" part in this case looms less

pronounced in the observer's mind as compared to the first case

because the attention is spread over the "fish" and "non-fish"

aspects of the scene.

Memory, Storage, and Retrieval

A stcond area of application relates to data memory, storage

and retrieval systems. It is clear that each event must have

some special circumstantial characteristic by which it can be

recognized. A likely candidate for such a function is the

sorting-integral residue < f(p) >A"

Now, investigate this possibility. Since
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f(p) uo pO(p) - u • p (199)0 0

and p0 = p U = P T T (200)

I. oA u P

we have < f(P) >A (PoA PT - PA "T)
oA A

T T
[(PA - PoA oA' +

X 2 T 2 T 2 22 A A + OA OA) =

I N2 N2 2 2
2 (PA -oA + PoA PA) =

X 2 2) e 2

(E2 2 E = 2 (201)
2 ~ E~ N 2

where the single target is represented by
T T E2 2 2

PoA A and PoA -PA is called the excess for the
distributed case (if E = o, the target is single). Hence F,
defined in Equation (201), is the difference between the excesses

of primary data and that of the target residue. If EN o, then
E =F. Hence, F is "stronger" if the primary data are split into
contrasting objects rather than into one object plus
"environmental debris".

A conceptual graph for the above case is given in Figure 5.

POA POA

DATA E ES~DUE OBJECT

Figure 5. Conceptual Graph of Decomposition2

of Data into Object Plus Residue
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When F o, the initial data represents a single object ana,

hence, there is no need for sorting. Hence, F may be considered

as a measure of "strength" for the sorting operation. The more

successful, the greater F will be, and the greater the chance for

storage and recollection for the event.

There is yet another interpretation for F which is derived

from the Taylor series expansion of f(p). Recall that

' T 1 ' v )2 T + *. (202)
f(P ) f fA + 2 f A + ) (A

because V t T 0. Now, it is easy to show that
A

f T f(PT) (PT 2 T 2) = o (203)

From Equation (192) of the previous subsection, with p" p':

S12 , AT 2
(p • V) f(p) p - (P p

,2 2 ,2 2

- Ap (1 - Cos = a p sin a (204)

I 2 P ' 2 2 a >( 2 5
And hence, < f(P)> 2 = 2 2 2 (205)

F2 '2.2
or F = < p sin a > (206)

The significance of the angle a is shown in Figure 6.

p,' data

P F-

l A^ single object

Figure 6. Definition of the Angle
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^T
Since <p > = PA has the same direction as PA' F measures a kind

of standard deviation or spread of the initial data from the

single average target obtained, in polar coordinates. This

information is readily calculated and could be stored for memory

and for later retrieval.

Overview of Target Identification Applications

The preceding theory on cognitive systems and processes will

have numerous applications. Not every application is obvious

from the start in the sense that something new and profitable is

immediately apparent. Some systems already in place have a well-

established growth and maturity after many years of trial-and-

error development through heuristic search. What the theory does

in such cases, and where it might be most useful, is to provide

an integrating picture. Conversely, by looking at present

methodology in various systems, the theory itself will be

enriched and can, through feedback into the operating system,

provide new insights and new development.

Hence, one may expect a fruitful and productive interaction

between the new theory of cognitive systems presented here and

certain types of existing expert systems in artificial

intelligence (AI) work for example, each case will have its own

growth pattern, from very slow to a very rapid and fertile

development. The theory will have an integrating effect, such

that AI work, linguistics, and even physics, can be shown to have

a common ground. This irtegrating effort can have an enormous

impact on the future growth in each of these fields.

At first, the search for good examples arid applications will

be difficult, mainly because the cognitive investigator lacks the

specialized inside knowledge of the field of application which is

necessary and essential to make a useful contribution. On the
other side, the experts in AI systems cannot be expected to

invest the time and effort it takes to follow through in detail

on the preceding development in the theory of cognitive systems.
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SECTION VIII

SUMMARY

The theory f cognition, as developed recently, has as a

primary goal and end-product the realization and identification

of a target-objective. In chess, the target-objective is to

capture the opponent's king. The sequence of steps which leads

to that objective is called the process towards target

realization. Given an amount of primary data pi, the task

consists of organizing this known informaLion into an objective

unit which is the goal target itself or a sub-target, as the case

may be.

The target objective may be reached through a sequence of

subtasks, with defined sub-target or sub-goals. In chess, each

subtask is called a move. In cognition, the process which leads

to the realization of the target-objective is called sorting.

Each task or sub-task is defined by thc primary data, pi, the

distribution function w(pl, p 2 ,...) associated with the data and

a set of constant dynamic factors. The sorting process consists

* of sorting out the primary data in some optimal fashion to find a

* best approach that leads to realizing the target-objective.

W All this is expressed mathematically by the sorting

integral. The processes which lead to optimizing the sorting

integral are the same processes which lead to realization of the

target-objective. Hence, there is a one-to-one correspondence

between the processes which optimize the sorting integral and the

physical processes which lead to target identification or

realization, as the case may be. The conditions which have to be

satisfied such that the sorting integral is maximum are called

target matching conditions. These determine the direction in

which the process should move in order to reach the target-

objective. Hence, they determine the dynamics of the sorting

operation.
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All this must sound familiar to the physicist, because the

dynamics of a closed physical system also is determined by a

process of optimization of an integral. There, the action-
integral represents the physical process and it determines the

so-called equations of motion for the system. The action-

integral originally was developed in the 19th century by
Hamilton, Jacobi, Lagrange, and others in an attempt to unify

classical mechanics. There is a distinct diffecence between
action integrals in the classical theory and the so-called

Feynman path-integral approach. Whereas tie former maximizes or
minimizes a physical quantity such as the time-interval a ray

takes to traverse the distance between two fixed points in space,

the latter is concerned with an integral over a phase-function

which rep-esents the classical action. The principal value of

the integration process will be from those points where the phase
is stationary. Hence, the classical path is, to a large extent,

defined by the stationary points of the phase function.

This theme carries over to cognition. But unlike the path-
integral, the sorting integral has a distribution function in the

integrand which represents and limits target.-information. One

can explain this difference by observing that the cognitive

process is guided by limited and specified knowledge which the

observer has available from the target, whereas the physical

state process has no such preference. The presence of the
distribution function w(p) in the integrand makes the sorting

integral behave more like a correlation function.

A best fit to desired objectives is reached when the

correlation function is maximized. One has to keep these

distinctions in mind if one compares path-integrals with sorting

integrals. Also, the mathematical ev;.luation becomes quite

different for the two cases. The Feynmtan path-integral cannot be

considered as a limiting case of the sorting integral when the

distribution function becomes uniform.

Despite these differences, there are remarkable similarities

wbich make a comparison useful to guide one's understanding of
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cognitive cperations. in both cases, the essence of the physicaL
state of the problem at hand is captured by a single compcict
mathematical formulation. In physics, this function is called
the Lagrangian, or equivalently the Hamiltonian, function. In
cognition, the essence of the sorting procedure is captured by a
norm function or noun. One can show that the object Hamiltonian,
under suitable conditions, satisfies the norm-function

requirements.*

The essence of the physical state is that it provides us
with a "unit of apperception", to use a Kantian phrase. The rest
of the world is as if it were blocked off and what is under

consideration is a small part, a micro-world, which nevertheless
for itself has the property of wholeness and atomicity. In

quantum theory, such a physical system is called a "pure state"
capable of being represented by a single wave function. This is
in contrast to an ensemble of pure states, which is called a
target mixture.

In cognition, one speaks of a concept of an object or target
which is distinct from an assembly of objects. It turns out that

the above-mentioned norm property provides the key ingredient by
which the concept attains its character of uniqueness, atomicity,

and irreducibility.

If knowledge progresses through stages of concept

formulation, then one has here at one's disposal a mathematical
tool for such a development. Target identification then consists

of finding the prope: concept for the object which optimally fits
a set of measured data.

Thus, a bridge is laid between what is known in perception,

AI theory, computer work, quantum theory, radar sensing

mechanisms, and a general theory of cognitive states and

processes.

* Reference 16, pp. 211-212.
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Applications can be found with memory and retrieval systems,

problem solving techniques, target identification and pattern

recognition, robotics, and linquistics research just to mention a

few areas.

15

152



REFERENCES

i. Hintikka, Jaakko, Knowledge and Belief, Cornell

University Press, 1962, Chapter V.

2. Searle, J. R., Speech Acts, Cambridge University Press,

1969.

3. Zeman, J. Jay, Modal Logic, Oxford at the Clarendon

Press, 1973.

4. Prior, A. N.: Formal Logic, 2nd Edition, Oxford

University Press, 1962.

5. Feynman, R., The Character of Physical Law, M. I. T.

Press, 1965.

6. Popper, Karl R., The Logic of Scientific Discovery,
Harper Torchbooks, TB/576.

7. Popper, Karl R., Conjectures and Refutations: The
Growth of Scientific Knowledge, Harper Torchbooks,

TB/1376, 1963.

8. Huynen, J. Richard, "Phenomenological Theory of Radar
Targets," Chapter 11 in Electromagnetic Scattering
(P.L.E. Uslenghi, ed.) Academic Press, N.Y. 1978. Also,

Ph.D. Dissertation, Rotterdam 1970 (available from the

author at 10531 Blandor Way, Los Altos, CA., 94022).

9. d'Espagnat, B., Conceptual Foundations of Quantum

Mechanics, 2nd ed., W. A. Benjamin, Inc. 1976.

153



10. Rihaczek, A. W., Principles of High Resolution Radar,

McGraw-Hill, 1969.

11. Kramers, H. A., Quantum Mechanics, Interscience
Publishers Inc., N. Y., 1957.

"12. Messiah, A., Quantum Mechanics, John Wiley and Sons.

13. Itzykson, C. and Zuber, K. B., Quantum Field Theory,

McGraw-Hill, N. Y., 1980.

14. Feynman, R. P., and Hibbs, A. R., Quantum Mechanics and
Path Integrals, McGraw-Hill, N. Y., 1965.

15. Dirac, P.A.M.: The Principles of Quantum Mechanics,
Oxford at the Clarendon Press, 1947.

16. Gelfand, I. M. and Fomin, S. V., Calculus of Variations,
"Prentice-Hall, 1963.

154



BIBLIOGRAPHY

1. Bair, A. and Edward Feigenbaurn: The Handbook of

Artificial Intelligence, Vol. I, II, III. Heuris Tech

Press, Stanford, Calif. 1981.

2. d'Espagnat, Conceptual Foundations of Quantum Mechanics,

W. A. Benjamin, 1976.

3. Dirac, P.A.M.: The Principles of Quantum Mechanics,
Oxford at the Clarendon Press, 1947.

4. Feynman, R. P.: The Character of Physical Law, MIT Press

1965.

5. Feynman, R.P. and A. R. Hibbs: Quantum Mechanics and

Path-Integrals, McGraw-Hill, 1965.
6. Fu, King Sun: Syntactic Pattern Recognition and

Applications, Prentice Hall, 1982.

7. Gelfand, I. M. and S. V. Fomin: Calculus of Variations,

Prentice Hall, 1963.

8. Glimm, J. and A. Jaffe: Quantum Physics A Functional

Integral Point of View, Pringer-Verlag, 1981.

9. Hintikka, Jaakko, Knowledge and Belief, see Chapter V,

Cornell University Press, 1962.

10. Hughes, G. E. and M. J. Cresswell: An Introduction to

Modal Logic, Methuen and Co., 1968.

11. Huynen, J. Richard: Towards a Theory of Perception for

Radar Targets, in: Inverse Methods in Electromagnetic

Imaging, Reidel Publ. Co., Dordrecht, Holland, 1984.
12. Itzykson, C. and K. B. Zuber: Quantum Field Theory,

McGraw Hill, 1980.

13. Kant, Immanuel: Critique of Pure Reason, Anchor Books,

Garden City, NY, (1781).
14. Malcolm, Harman: Thought and Knowledge, Cornell Univ.

Press, Ithaca, NY 1977.

155



15. McCorduck, Pamela; Machines Who Think, Freeman, San

Francisco, 1979.

16. Minski, Marvin: K-Lines, a theory of memory in Norman

(1981) 87-103.

17. Norman, D. A. ed: Perspectives on Cognitive Science,

Lawrence Erlbaum Assoc., Hillsdale, NJ 1981.

18. Popper, Karl R., The Logic of Scientific Discovery,

Harper Torchbooks, TB/576.

"* 19. Popper, Karl R., Conjectures and Refutations: The Growth

of Scientific Knowledge, Harper Torchbooks, TB/1376,

1963.

• 20. Prior, A. N.: Formal Logic, 2nd Edition, Oxford

University Press, 1962.
21. Rihaczek, A. W., Principles of High-Resolution Radar,

McGraw-Hill, 1969.

22. Schwinger, J.: Quantum Electrodynamics, Dover Books,
1950

23. Searle, J. R., Speech Acts, Cambridge University Press,

1969.

24. Simon, H. A., The Sciences of the Artificial MIT Press,

Cambridge MA, 1969.

25. Sowa, J. F., Conceptual Structures, Addison-Wesley, 1984.

26. Zeman, J. Jay, Modal Logic, Oxford at the Clarendon

Press, 1973.

156


